Advertisement

Molecular machines

All living organisms – human, animal, or otherwise – continuously move molecules around their cells. It's a crucial mechanism of life, vital for feeding cells the proteins they need to function. And now scientists at Northwestern University have created a machine that mimics this pumping mechanism. Their molecular pump is the world's first such machine developed entirely through chemical engineering in the laboratory, and it could one day power artificial muscles and other molecular machines.

Read More
Ribosomes are the main engines of creation of the proteins on which the body depends. Now, an artificial analog of the biological ribosome has been designed and synthesized by Professor David Leigh FRS and his team in the School of Chemistry at the University of Manchester. Read More
Remember back in the old days, when nano-scale motors were a clunky 500 nanometers across? That record was subsequently broken with a 200-nanometer model, but has now been broken again, by a motor that’s just one nanometer wide. By comparison, the width of a human hair is about 60,000 nanometers. The new motor, created by scientists at Tufts University in Massachusetts, is reportedly the first one ever to consist of a single molecule. Read More
Just like a regular-sized device requires a regular-sized motor to operate, a nanodevice likewise requires a molecular-scale motor. In some cases, that motor takes the form of a piston, and building a piston that’s just a few nanometers long ... well, it’s pretty hard. It can and has been done, but it’s an extremely fiddly process. Now, scientists from France’s Centre National de la Recherche Scientifique (CNRS) and the Université de Bordeaux, along with colleagues in China, have developed a molecular piston that is capable of assembling itself. Read More
Molecular machines that seem to "walk" in living organisms transporting proteins between cells are the subject of a new study by University of California, Riverside researchers who hope to find out more about how these remarkable machines behave, in a development that could lead to important breakthroughs in medicine and the manufacturing of electronic devices. Read More
Advertisement