Advertisement

MIT

Robotics

Soft-bodied robofish pulls off sharp turns like the real thing

Anyone who has ever tried to grab a minnow out of the water knows that it's almost impossible. Not only can they swim forward very quickly, but they can also make near-instantaneous right-angle turns, unpredictably shooting off to one side or the other in mere milliseconds. Now, scientists at MIT have replicated that capability in a soft-bodied robotic fish. Read More

Environment

Nano technique boosts plant energy production and creates plant biosensors

In 2010, Stanford University researchers reported harnessing energy directly from chloroplasts, the cellular "power plants" within plants where photosynthesis takes place. Now, by embedding different types of carbon nanotubes into these chloroplasts, a team at MIT has boosted plants' ability to capture light energy. As well as opening up the possibility of creating "bionic plants" with enhanced energy production, the same approach could be used to create plants with environmental monitoring capabilities.Read More

Space

MIT researchers propose gas stations in space

Getting into space is an expensive business where every little bit of extra weight, which includes the fuel powering the spacecraft, can add thousands of dollars to the cost of a mission. A team of researchers at MIT proposes establishing gas stations in space as a possible way to help cut the cost of future missions to the Moon. Read More

Science

Need to filter some water? Just go peel a pine tree

In many parts of the world, the presence of harmful bacteria makes it vitally important that water from lakes or rivers be thoroughly filtered before being consumed. While materials such as silver nanoparticles and titanium dioxide will do the job, people in developing nations or rural settings typically need something a lot cheaper and easier to manufacture. As it turns out, wood from pine trees works great. Read More

Health & Wellbeing

Cochlear implants may be losing their awkward external hardware

Thanks to the development of cochlear implants, many people who would otherwise be quite deaf are able to regain a limited sense of hearing. Unfortunately, the implants also incorporate external components that can get in the user's way, and that look ... well, that look like the user has something hooked up to their ear. Now, however, researchers at MIT, Harvard Medical School and the Massachusetts Eye and Ear Infirmary have developed a chip that could lead to cochlear implants that are entirely implanted. Read More

Science

Nanomaterial thermophotovoltaic system increases efficiency and portability of solar power

It’s not a new idea to improve upon traditional solar cells by first converting light into heat, then reemitting the energy at specific wavelengths optimally tuned to the requirements of the solar cell, but this method has suffered from low efficiencies. However, new research at MIT using nanoscale materials finally shows how thermophotovoltaics could become competitive with their traditional cousins, and grant benefits such as storing solar energy in the form of heat to postpone conversion into electricity.Read More

Health & Wellbeing

Soft pneumatic exoskeleton could be perfect for use in rehab

We've recently been hearing a lot about how exoskeletons can be used in rehabilitation, guiding patients' disabled limbs through a normal range of motion in order to develop muscle memory. The problem is, most exoskeletons are rigid, limiting their degrees of freedom to less than those of the body part they're moving. A team of scientists are looking at changing that, with a partial "soft exoskeleton" that replicates the body's own muscles, tendons and ligaments. Read More

Medical

New superglue fixes holes in the heart

A hole in the heart is never a good thing, so when an infant is born with such a defect, doctors have to act quickly to fix it. Unfortunately, both sutures and staples can damage the heart tissue, plus it takes too long to apply sutures. Existing surgical adhesives have their own drawbacks in that they can be toxic, and they typically become unstuck in wet, dynamic environments such as the heart. As a result, infants often require subsequent operations to "replug" the hole. Now, however, scientists have developed a sort of superglue for the heart, that quickly and securely bonds patches to holes. Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning