Introducing the Gizmag Store

MIT

MIT's wearable mapping device

A number of research institutions are currently developing systems in which autonomous robots could be sent into places such as burning buildings, to create a map of the floor plan for use by waiting emergency response teams. Unfortunately, for now, we still have to rely on humans to perform that sort of dangerous reconnaissance work. New technology being developed by MIT, however, kind of splits the difference. It’s a wearable device that creates a digital map in real time, as the person who’s wearing it walks through a building.  Read More

A basic diagram of MIT's painless drug delivery system

Although some medications just don’t work when taken orally, the fact is that nobody likes getting injections. Research being conducted at MIT, however, could lead to a new painless method of drug delivery via the skin. Harsh though it might sound, it involves using ultrasound to blast off the outer layer of skin, so that drugs can then get into the bloodstream.  Read More

The oil and water separation technique uses permanent magnets immersed in a reservoir cont...

Possibly the only good thing to come out of the Deepwater Horizon disaster is the subsequent increase in research into finding more effective ways to clean up oil spills, including such initiatives as the X PRIZE Foundation's Wendy Schmidt Oil Cleanup X CHALLENGE. Joining the list is a new method devised by researchers at MIT who propose separating oil and water using magnets. The new technique would allow the oil to be recovered to help offset the costs of the cleanup operation.  Read More

Muscle cell undergoing light activation (Image: MIT)

In Sir Arthur C. Clarke’s 1972 novel Rendezvous with Rama, the explorers of a seemingly deserted alien spaceship passing through our Solar System encounter a strange three-legged creature that turns out to be an organic robot. In the ‘70s, this seemed so incredible that it could only be the product of an alien civilization thousands of years ahead of us. In 2012, scientists at MIT and the University of Pennsylvania are proving otherwise by starting work on organic robots here on Earth. Using genetically engineered muscle tissue that responds to light, they are blurring the line between animal and machine at the cellular level.  Read More

Structure of 2D molybdenum disulfide (Image: Wang et al. / MIT)

Imagine a world where rooms are lit by their walls, clothes are smartphones and windows turn into video screens. That may seem like a bit of science fiction, but not for long. Researchers at MIT are using a two-dimensional version of molybdenum disulfide (MoS2) to build electrical circuits that may soon revolutionize consumer electronics.  Read More

A microscope image of some of the wired tissue (Image: Boston Children's Hospital)

Under its human skin, James Cameron’s Terminator was a fully-armored cyborg built out of a strong, easy-to-spot hyperalloy combat chassis – but judging from recent developments, it looks like Philip K. Dick and his hard-to-recognize replicants actually got it right. In a collaboration between Harvard, MIT and Boston Children's Hospital, researchers have figured out how to grow three-dimensional samples of artificial tissue that are very intimately embedded within nanometer-scale electronics, to such an extent that it is hard to tell where one ends and the other begins. It could lead to a breakthrough approach to studying biological tissues on the nanoscale, and may one day be used as an efficient, real-time drug delivery system – and perhaps, why not, even to build next-generation androids.  Read More

In the near future, genetically-altered Ralstonia eutropha bacteria could be used to conve...

Scientists at the Massachusetts Institute of Technology (MIT) have succeeded in genetically altering Ralstonia eutropha soil bacteria in such a way that they are able to convert carbon into isobutanol, an alcohol that can be blended with or even substituted for gasoline. It is hoped that once developed further, this technology could help reduce our reliance on fossil fuels, and lessen the amount of carbon dioxide released into the atmosphere by smoke stacks.  Read More

The different components that make up the MIT microthruster (Photo: MIT)

Small-scale satellites show a lot promise, but unless they have equally small-scale thrusters they’re pretty limited in what they can do. Unfortunately conventional thrusters are heavy and take up a lot of valuable space, but a penny-sized rocket engine developed at MIT holds the prospect of not only increasing the capabilities of miniature satellites, but of combating space junk as well.  Read More

Matthew Orosz and Amy Mueller work with locals in Lesotho to implement their solar ORC sys...

Solar power would appear to be an obvious choice for the developing world, but as impoverished regions need systems that are simple, self-operating and cheap to build and maintain, this is generally not the case. The ability to provide heating in addition to electricity would also be beneficial because many communities need hot water has much as they need lights. An MIT team has developed a solution that meets these needs with a solar power system that is an air conditioner built backwards.  Read More

Researches at MIT have demonstrated a remarkable new autonomous, fixed-wing micro-UAV capa...

Researches at MIT have demonstrated a remarkable new micro-UAV capable of flying and avoiding obstacles in an indoor environment. It's autonomous, gathers data solely from onboard sensors (without GPS), and is fixed-wing—so it doesn't have the luxury of hovering.  Read More

Looking for something? Search our 26,501 articles