Shopping? Check out our latest product comparisons

Microscopes

Dr. Steve Lee, with some of his easy-bake lenses

Microscope lenses are typically made either by grinding and polishing glass discs, or pouring polymers into molds – both techniques can be quite involved, which is reflected in the price of the finished product. Now, however, a scientist from Australian National University has devised a new lens-making process, in which drops of silicone are simply baked in an oven. The resulting lenses can be used for a variety of applications, yet are worth less than one cent each.  Read More

The MicrobeScope is a mini microscope designed for use with the iPhone

We've seen devices that let you attach your smartphone to a microscope, but they require you to have access to a microscope in the first place. What if you don't? Well, that's where the MicrobeScope comes in. It's a portable 800x microscope that works with newer iPhones – or just with the naked eye.  Read More

The Foldscope is made mostly of cardstock, and can be shipped flat-packed

According to the World Health Organization, there were approximately 207 million cases of malaria worldwide in 2012, 627,000 of which proved fatal. Unfortunately, the disease most often occurs in developing nations, where diagnostic equipment may not be available. This means that doctors can't determine the particular strain of malaria from which a patient is suffering, and thus don't know which medication will work best. Manu Prakash, an assistant professor of bioengineering at the Stanford School of Medicine, hopes to change that ... using his disposable folding paper microscope.  Read More

View of MIT's new neutron microscope looking back along the beam path (Photo: MIT)

Neutrons have a set of unique properties that make them better suited than light, electrons, or x-rays for looking at the physics and chemistry going on inside an object. Scientists working out of MIT's Nuclear Reactor Laboratory have now invented and built a high-resolution neutron microscope, a feat that required developing new approaches to neutron optics.  Read More

UCLA scientists have developed a smartphone attachment that acts as a subwavelength micros...

A team of engineers at UCLA has created a 3D-printed attachment that enables smartphone cameras to image particles as small as 90 nanometers. This marks the first time that single nanoparticles and viruses have been detected using a cellphone-based imaging system.  Read More

UCL graduate student Alice Pyne works on a LEGO-based atomic force microscope (Photo: Inst...

Scanning atomic force microscopes, first introduced into commerce in 1989, are a powerful tool for nanoscale science and engineering. Capable of seeing individual atoms, commercial AFM prices range between US$10K and $1M, depending on the unit's features and capabilities. During the recent LEGO2NANO summer school held at Tsinghua University in Beijing, a group of Chinese and English students succeeded in making a Lego-based AFM in five days at a cost less than $500.  Read More

Using Caltech's system, an ordinary microscope can capture 100 times more information per ...

Thanks to research being conducted at the California Institute of Technology, regular microscopes could soon be capable of much higher-resolution imaging. Instead of making changes to the microscopes’ optics, the Caltech researchers are instead focusing on using a computer program to process and combine images from the devices.  Read More

Bodelin's ProScope Micro Mobile is a microscope that mounts on the iPhone

Optics manufacturer Bodelin is no stranger to hand-held microscopes, having previously brought us a series that can be connected to the USB port of a laptop. Given that smartphones are in many ways replacing laptops, however, it shouldn’t come as a surprise that the Oregon-based company has now introduced its ProScope Micro Mobile – it’s a lab-quality microscope that mounts on the user’s iPhone.  Read More

A 3D image of a rotavirus, constructed from data gathered using the new technique

Traditionally, in order to view tiny biological structures such as viruses, they must first be removed from their natural habitats and frozen. While this certainly keeps them still for the microscope, it greatly limits what we can learn about them – it’s comparable to an ichthyologist only being able to study dead fish in a lab, instead of observing live ones in the ocean. Now, however, researchers at the Virginia Tech Carilion Research Institute have devised a technique for observing live viruses in a liquid environment. It could have huge implications for the development of treatments for viral infections.  Read More

Image of the shadow of a single ytterbium atom (Image: Griffith University)

A team of researchers at Griffith University has managed to stretch the capabilities of microscopy to its ultimate limit. Culminating a five-years effort, the scientists have obtained a digital image of the shadow cast by a single atom, in a development that might soon lead to important advances in scientific observations ranging from the very big to the very small.  Read More

Looking for something? Search our 27,866 articles