Advertisement
more top stories »

Microfluidic

— Health and Wellbeing

Spleen-on-a-chip could treat bloodstream infections

By - April 9, 2013 1 Picture
The spleen’s job is to filter our blood. When people are critically ill or have received traumatic injuries, however, the spleen alone is sometimes not able to remove enough of the pathogens on its own – potentially-fatal sepsis is the result. In order to help avert such an outcome in those situations, scientists from the Wyss Institute for Biologically Inspired Engineering at Harvard University are developing a device known as the spleen-on-a-chip. Read More
— Electronics

Stretchable electrical wires heal back together after being severed

By - January 23, 2013 1 Picture
Last month, we heard about how a team led by North Carolina State University’s Dr. Michael Dickey had created an electrical wire that could be stretched up to eight times its regular length ... and still carry a current. This was possible thanks to a conductive liquid metal alloy of gallium and indium, contained inside the wire’s elastic polymer outer housing. Now, Dickey's team has developed a new wire that not only can be stretched, but that will heal itself when severed. Read More
— Medical

Inexpensive card-sized device runs 50 blood tests in seconds

By - December 31, 2012 1 Picture
Ordinarily, when medical clinicians are conducting blood tests, it’s a somewhat elaborate affair. A full vial of blood must be drawn, individual portions of which are then loaded into large, expensive machines such as mass spectrometers. The results are usually quite accurate, but they’re not instantaneous, and require the services of trained personnel in a well-equipped lab. That may be about to change, however. Scientists from Houston’s Methodist Hospital Research Institute and MD Anderson Cancer Center have created a credit card-sized gadget, that can instantly check a single drop of blood for up to 50 different substances – and it costs about US$10. Read More
— Science

New microscopy technique lets scientists see live viruses in their natural habitat

By - December 30, 2012 1 Picture
Traditionally, in order to view tiny biological structures such as viruses, they must first be removed from their natural habitats and frozen. While this certainly keeps them still for the microscope, it greatly limits what we can learn about them – it’s comparable to an ichthyologist only being able to study dead fish in a lab, instead of observing live ones in the ocean. Now, however, researchers at the Virginia Tech Carilion Research Institute have devised a technique for observing live viruses in a liquid environment. It could have huge implications for the development of treatments for viral infections. Read More
— Medical

Microfluidic device designed for large-scale tissue engineering

By - August 2, 2012 2 Pictures
Tissue engineering is definitely an exciting field – the ability to create living biological tissue in a lab could allow scientists to do things such as testing new drugs without the need for human subjects, or even to create patient-specific replacement organs or other body parts. While some previous efforts have yielded finished products that were very small, a microfluidic device being developed at the University of Toronto can reportedly produce sections of precisely-engineered tissue that measure within the centimeters. Read More
— Medical

Handheld DMR spectrometer diagnoses cancer in an hour

By - June 26, 2012 5 Pictures
Magnetic resonance. We all think of the massive multimillion dollar magnetic resonance imaging machines into whose gaping mouth we are slowly propelled on a motorized table, ready to have our smallest flaws exposed. But the phenomenon of magnetic resonance has other medical uses. A team of physicians and scientists led by Prof. Ralph Weissleder of Massachusetts General Hospital (MGH) has developed a handheld diagnostic magnetic resonance (DMR) device that can diagnose cancer in an hour with greatly improved accuracy compared to the current gold standard. The DMR technique is sensitive enough that only material from a fine needle aspiration biopsy is needed for the test - a far less painful experience compared to the usual surgical or core needle biopsies. Read More
— Health and Wellbeing

Microfluidic device designed to cleanse blood

By - May 4, 2012 2 Pictures
In a natural phenomenon known as margination, platelets and leukocytes (white blood cells) within the bloodstream move towards the sides of blood vessels and adhere to them. It occurs at wound sites, during the early stages of inflammation. Recently, a team of researchers from the Massachusetts Institute of Technology and the National University of Singapore have put that process to work in a microfluidic device that could be used to cleanse the blood, perhaps acting as a treatment for bacteria-related blood disorders such as sepsis. Read More

Mini-lab promises affordable on-site DNA-based testing

A genetic testing mini-lab developed by researchers at the University of Alberta to set to begin commercial trials within a year. The Domino system provides a portable, cheap and powerful alternative to conventional laboratories that delivers a range of point-of-care diagnostic possibilities including tests for blood borne diseases such as malaria and those affecting farm animals. Read More

Subscribe to Gizmag's email newsletter

Advertisement