Advertisement
more top stories »

Microchip

— Science

IBM brings carbon nanotubes a step closer to usurping silicon

By - October 30, 2012 3 Pictures
Silicon’s reign as the standard material for microchip semiconductors may be coming to an end. Using standard semiconductor processes, scientists from IBM Research have succeeded in precisely placing over 10,000 working transistors made from carbon nanotubes onto a wafer surface – and yes, the resulting chip was tested, and it worked. According to IBM, “These carbon devices are poised to replace and outperform silicon technology allowing further miniaturization of computing components and leading the way for future microelectronics.” Read More
— Science

"Inexact" computer chip makes mistakes, but is 15x more efficient

By - May 17, 2012 2 Pictures
Last year, a team of U.S. researchers applied the pruning shears to computer chips to trim away rarely used portions of digital circuits. The result was chips that made the occasional mistake, but were twice as fast, used half as much energy, and were half the size of the original. Now, building on the same “less is more” idea, the researchers have built an “inexact” prototype silicon chip they claim is at least 15 times more efficient than current technology in terms of speed, energy consumption and size. Read More
— Electronics

IBM unveils one trillion bit-per-second optical chip

By - March 12, 2012 2 Pictures
Last Thursday at the Optical Fiber Communication Conference in Los Angeles, a team from IBM presented research on their wonderfully-named “Holey Optochip.” The prototype chipset is the first parallel optical transceiver that is able to transfer one trillion bits (or one terabit) of information per second. To put that in perspective, IBM states that 500 high-def movies could be downloaded in one second at that speed, while the entire U.S. Library of Congress web archive could be downloaded in an hour. Stated another way, the Optochip is eight times faster than any other parallel optical components currently available, with a speed that’s equivalent to the bandwidth consumed by 100,000 users, if they were using regular 10 Mb/s high-speed internet. Read More
— Electronics

'Pruned' microchips are leaner and meaner

By - March 17, 2011 1 Picture
If you had to use a commuting bicycle in a race, you would probably set about removing the kickstand, fenders, racks and lights to make the thing as fast and efficient as possible. When engineers at Houston’s Rice University are developing small, fast, energy-efficient chips for use in devices like hearing aids, it turns out they do pretty much the same thing. The removal of portions of circuits that aren’t essential to the task at hand is known as “probabilistic pruning,” and it results in chips that are twice as fast, use half the power, and are half the size of conventional chips. Read More
— Electronics

Researchers demonstrate self-repairing chip

By - March 16, 2011 2 Pictures
As chips continue to get smaller, the technological possibilities just get larger. One of the trade-offs of miniaturization, however, is that smaller things are also often more fragile and less dependable. Anticipating a point at which chips will become too tiny to maintain their current level of resilience, a team of four companies and two universities in The Netherlands, Germany, and Finland have created what they say could be the solution – a chip that monitors its own performance, and redirects tasks as needed. Read More
— Electronics

Counterfeit-proofing chips with digital fingerprints

By - February 11, 2011 1 Picture
As any reader of detective fiction will tell you, no two fingerprints are alike. The similarly unique physical structure of microchips could help manufacturers protect their products from piracy, thanks to research at the Fraunhofer Institute for Secure Information Technology. The team has developed technology that makes use of slight variations generated during manufacture to produce unique, clone-proof digital fingerprints. Read More
— Electronics

Solar powered microchips put batteries in the shade

By - December 30, 2010 3 Pictures
In a new, more efficient approach to solar powered microelectronics, researchers have produced a microchip which directly integrates photovoltaic cells. While harnessing sunlight to power microelectronics isn't new, conventional set-ups use a separate solar cell and battery. What sets this device apart from is that high-efficiency solar cells are placed straight onto the electronics, producing self-sufficient, low-power devices which are highly suitable for industrial serial production and can even operate indoors. Read More
— Telecommunications

New chip could allow antenna arrays to replace satellite dishes

By - October 19, 2010 1 Picture
There was a time not so very long ago when people who wanted satellite TV or radio required dishes several feet across. Those have since been replaced by today’s compact dishes, but now it looks like even those might be on the road to obsolescence. A recent PhD graduate from The Netherlands’ University of Twente has designed a microchip that allows for a grid array of almost-flat antennae to receive satellite signals. Read More
— Science

Microfluidic chip device identifies bacteria types

By - September 16, 2010 1 Picture
A team of biomedical engineers at Taiwan’s National Cheng Kung University has created a new “on-chip” method to identify bacteria. By creating microchannels between two roughened glass slides containing gold electrodes, the researchers are able to sort and concentrate bacteria. A form of spectroscopy is then applied to identify them, providing a portable device that can be used for tasks like food monitoring and blood-screening. Read More
— Medical

Microscopic 'ants' can transport objects inside a microchip

By - December 29, 2009 1 Picture
A collaboration between MIT, Boston University and German researchers has produced a new system that could soon be used to move tiny objects inside a microchip. The system is self-assembling, can be controlled via software and can transport particles up to 100 times the size of the beads carrying them. The objective is to give scientists new insights as to how cells and other objects are transported by tiny cilia throughout our bodies. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement

Subscribe to Gizmag's email newsletter

Advertisement