Advertisement

Microchip

Electronics

Cool Runnings: Lockheed using microscopic drops of water to chill chips from the inside

Every year, electronic components shrink a bit more, allowing engineers to create more powerful and sophisticated chips. Unfortunately, these chips also generate a lot of heat, so novel cooling systems are needed to keep them running. As part of DARPA's ICECool-Applications research program, Lockheed Martin is developing a way of cooling high-powered microchips from the inside using microscopic drops of water.Read More

Medical

Implanted micropump could deliver epilepsy drugs right into the brain

A promising new treatment for epilepsy directly targets the nerve cells, deep within the brain, that cause seizures. The treatment uses an electronic micropump and an anticonvulsant drug to inhibit the relevant areas of the brain without affecting healthy brain regions. It has had promising initial results on mice in vitro and will now be tested on live animals.Read More

Electronics

Self-repairing, reconfigurable electronic circuits take a step closer to reality

If electronic circuits could automatically reconfigure their internal conductive pathways as required, microchips could function as many different circuits on the one device. If many of these devices were then incorporated into larger pieces of equipment, such as robots, it is possible that self-sufficient, self-sustaining machines could change to suit their environment or even reconfigure broken or damaged pathways to repair themselves. Promising applications like these – and more – could one day be made possible if technology resulting from recent research into atomic manipulation at École polytechnique fédérale de Lausanne (EPFL) comes to fruition.Read More

Quantum Computing

New micro-ring resonator creates quantum entanglement on a silicon chip

The quantum entanglement of particles, such as photons, is a prerequisite for the new and future technologies of quantum computing, telecommunications, and cyber security. Real-world applications that take advantage of this technology, however, will not be fully realized until devices that produce such quantum states leave the realms of the laboratory and are made both small and energy efficient enough to be embedded in electronic equipment. In this vein, European scientists have created and installed a tiny "ring-resonator" on a microchip that is claimed to produce copious numbers of entangled photons while using very little power to do so.Read More

Medical

New microchip promises to streamline and simplify diabetes diagnoses

For people who don't already know, here's the difference between type 1 and type 2 diabetes: the body produces little or no insulin in the case of type 1, and isn't able to utilize the insulin that it does produce in type 2. It's a significant difference, so it's important that patients are diagnosed correctly. Thanks to a new microchip developed by a team at Stanford University led by Dr. Brian Feldman, doing so could soon be quicker, cheaper and easier than ever before. Read More

Electronics

New 36-core chip takes design clues from internet routers

Researchers at MIT are experimenting with a radically new design for multicore microchips that takes hints from the way internet routers work to make data flow between cores faster and more reliably. The ideas are now being put to the test on an innovative 36-core chip that might soon see commercial applications.Read More

Outdoors

High-tech cross-country skis tell you where to put the wax

The waxing of cross-country skis can be a tricky business. Not only do you have to determine the proper hardness for the snow conditions, but you also need to make sure that the grippy kick wax and the more slippery glide wax each end up being applied to the proper sections of the ski. Norwegian ski manufacturer Madshus has set out to simplify the process, with microchip-equipped skis. Read More

Electronics

Tin-based stanene could conduct electricity with 100 percent efficiency

A team of theoretical physicists from the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University is predicting that stanene, a single layer of tin atoms laid out in a two-dimensional structure, could conduct electricity with one hundred percent efficiency at room temperature. If the findings are confirmed they could pave the way for building computer chips that are faster, consume less power, and won't heat up nearly as much.Read More

Electronics

Spintronics used to create 3D microchip

A major obstruction to the development of practical 3D microchips is moving data and logic signals from one layer of circuitry to another. This can be done with conventional circuitry, but is quite cumbersome and generates a good deal of heat inside the 3D circuit. Physicists at the University of Cambridge have now developed a spintronic shift register that allows information to be passed between different layers of a 3D microchip. Read More

Science

Indium gallium arsenide transistor could boost microchip performance

As there is a finite number of transistors that can be effectively packed onto a silicon chip, researchers have been searching for an alternative to silicon that would allow integrated circuit development to continue to keep pace with Moore's Law. Researchers at MIT have recently used indium gallium arsenide to create the smallest transistor ever built from a material other than silicon. The new transistor, which is said to “work well,” is just 22 nanometers long and is a metal-oxide semiconductor field-effect transistor (MOSFET), which is the kind typically used in microprocessors. Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement