Highlights from the 2014 LA Auto Show

MEMS

The Purdue microtweezers, which are said to be less expensive to produce than conventional...

In order to do things such as building microelectromechanical systems (MEMS) or grabbing individual stem cell spheres for analysis, scientists use extremely fine-tipped tools known as microtweezers. While such devices aren't a brand new innovation in and of themselves, researchers from Indiana's Purdue University have developed a new type of microtweezers that are said to be easier and cheaper to manufacture than their conventional counterparts. Not only that, but unlike most similar devices currently in use, they don't require heat, magnetism or electricity to operate.  Read More

One of the diamond cavities carved by the NIST team

With sizes typically measured in micrometers, Micro-electromechanical systems (MEMS) devices are already being used in applications such as super-accurate sensors, energy-harvesting devices, and electronic signal amplifiers. Given how difficult it would be to replace such systems' moving parts as they wear out, it would be ideal if those parts could be made from as hard a material as possible. Well, while most MEMS are presently made chiefly of silicon, researchers from the National Institute of Standards and Technology (NIST) are now on their way to making them from diamonds.  Read More

The MEMS energy harvesting device created by MIT researchers can generate 100 times as muc...

The advantages of wireless sensors to monitor equipment and structures in remote locales are obvious, but are lessened significantly if their batteries need to be regularly changed. We’ve seen a number of microelectromechanical systems, or MEMS, that harvest energy from the environment, such as ambient light and radio waves and vibrations. Now MIT News is reporting the development of a new piezoelectric device that is about the size of a U.S. quarter and can generate 100 times as much power as similarly sized devices.  Read More

Researchers from North Carolina State University and Carnegie Mellon University have combi...

Nancy Sinatra once mused that her boots were made for walking. In these days of global positioning, going walkabout is not as random an event as it might once have been, but there are still occasions when the all-seeing GPS device can't pick up a satellite. In such cases, having a back-up could mean the difference between getting out of the deep, dark underground cave in one piece or being lost in its tunnels forever. Researchers from North Carolina State University and Carnegie Mellon University have combined technology that is used to measure speed and distance with portable radar equipment to help keep track of a user's location.  Read More

Johan Engelen with the full Micronium setup

It's much, much smaller than its Stradivarian cousin, but not even the Borrowers, Lilliputians or Blefuscudians are of sufficiently diminutive proportions to take a bow to the Micronium. The tiny instrument is made up of microscopic springs activated by combs to produce an audible tone. Half a dozen tone systems are placed on a chip and then chips combined to offer an orchestral range of sounds.  Read More

A team of biomedical engineers at Taiwan's National Cheng Kung University has created a ne...

A team of biomedical engineers at Taiwan’s National Cheng Kung University has created a new “on-chip” method to identify bacteria. By creating microchannels between two roughened glass slides containing gold electrodes, the researchers are able to sort and concentrate bacteria. A form of spectroscopy is then applied to identify them, providing a portable device that can be used for tasks like food monitoring and blood-screening.  Read More

A first generation, self-calibratable MEMs that has been used to measure the Casimir force...

Micro electromechanical systems, or MEMs, are promising in an array of high-tech applications. However, the accuracy of conventional techniques to gauge the force and movement of tiny objects containing components so small they have to be measured on the scale of micrometers or nanometers are typically off by 10 percent or more because of their inherent uncertainties. A new technology enabling MEMs to "self-calibrate" could overcome this problem and make possible super-accurate and precise sensors for crime-scene forensics, environmental testing and medical diagnostics.  Read More

The teeny tiny chessboard designed by the Texas Tech team for Sandia Lab's annual MEMS stu...

Anyone who subscribes to the view that good things come in small packages would no doubt be impressed by the winners of this year’s design contest held at Sandia Labs for novel and educational microelectromechanical systems (MEMs). The big, or should I say exceedingly small, winners were the world’s smallest chessboard, which is about the diameter of four human hairs, and a pea-sized microbarbershop that is intended to service a single hair.  Read More

Could a tiny piezoelectric generator provide convert enough energy from walking to power y...

Could walking or running generate enough energy to power your cell phone or GPS device? Dr. Ville Kaajakari has developed an innovative piezoelectric generator prototype small enough to be embedded in the sole of a shoe that's designed to produce enough power to operate GPS receivers, location tags and eventually, even a cell phone.  Read More

The Panoptes platform will support tiny cave cameras and iris recognition technology suita...

Researchers at the Southern Methodist University (SMU) in Dallas are developing new miniature camera technology and an iris recognition application built on a high-resolution, light and compact platform known as Panoptes. The technology is designed to help the military and border patrol to track combatants in dark caves or alleys and airport security personnel to quickly and unobtrusively identify a subject from an iris scan.  Read More

Looking for something? Search our 29,541 articles