Advertisement

Lawrence Berkeley National Laboratory

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel. Read More
By applying 120 year old radio frequency antenna theory to the much newer field of photonics, researchers at Lawrence Berkeley National Laboratory claim to have produced a prototype optical antenna that increases the intensity of emission from a nanorod light source by more than 115 times. This technique may offer the opportunity to replace power-hungry lasers in short-range optical communications devices with enhanced low-power LEDs. Read More
Taking careful aim with a quadrillion watt laser, researchers at the US Department of Energy’s Lawrence Berkeley National Lab claim to have managed to speed up subatomic particles to the highest energies ever recorded for a compact accelerator. By blasting plasma in their tabletop-size laser-plasma accelerator, the scientists assert that they have produced acceleration energy of around of 4.25 giga-electron volts. Acceleration of this magnitude over the short distances involved correlates to an energy rise 1,000 times greater than that of a traditional – and very much larger – particle accelerator. Read More

Researchers with the Lawrence Berkeley National Laboratory and the University of California Berkeley have measured what is believed to be the smallest force yet recorded – 42 yoctonewtons, or a septillionth of a newton. Read More

Particle accelerators like the Large Hadron Collider (LHC) are wonders of modern engineering and vending machines for Nobel prizes, but they’re also large – as indicated by the LHC's name – and costly. A new theoretical study by the Lawrence Berkeley National Laboratory's Berkeley Lab Laser Accelerator (BELLA) Center suggests how lasers could dramatically shrink the size and cost of particle accelerator. If the models hold true, it could remove a significant bottleneck from physics research and open up such machines to industrial and medical applications. Read More
Scientists at Berkeley Lab and the University of California (UC) Berkeley have created sensitive, tactile sensors that are similar to a cat's whiskers. The so-called "e-whiskers" could be used to help robots feel their way around a space. Read More
If a so-called "rise of the machines" ever comes to fruition, our chances of survival may have just taken a big hit. A team of scientists from the US Department of Energy ’s Lawrence Berkeley National Laboratory has demonstrated a new type of robotic muscle with 1,000 times more power than that of a human's, and the ability to catapult an item 50 times its own weight. Read More
Batteries. We buy them at the store, use them up, and throw them away without much thought. In reality, however, batteries are remarkably complex electrochemical devices that are continually evolving. The latest example of this comes from the Lawrence Berkeley National Laboratory, where researchers have invented an advanced lithium/sulfur (Li/S) cell that offers a unique combination of energy storage, power, recharge speed, and survivability. Read More
Industrial and medical accidents have resulted in about 3,000 cases of acute radiation syndrome with over 100 deaths over the past 60 years. Far larger numbers are possible in the future from major reactor accidents or the use of dirty bombs. In the aftermath of a major incident, the radiation dosages of victims must be sorted out quickly, so that suitable treatment can begin as soon as possible. Medical researchers at the US Lawrence Berkeley National Laboratory have now developed a simple blood test to determine the exposure of a patient to ionizing radiation, that can be carried out in the field with a hand-held analyzer. Read More
Researchers at the Energy Biosciences Institute (EBI) are generating bio fuels from renewable sources, such as sugar and starch, using a process that could be commercialized in as little as five to ten years. Although the fuels are currently more expensive to produce than those made from petroleum, they contain more energy per gallon than ethanol and the researchers say that, if adopted, could help to cut greenhouse gas emissions from transportation. Read More
Advertisement