Advertisement

Lawrence Berkeley National Laboratory

Environment

Breaking down humanity's contribution to climate change

Over the past 100 years, global temperatures have risen by an average amount of 0.8° C (1.4° F), which according to the Intergovernmental Panel on Climate Change (IPCC), is due largely to humanity's release of pollutants into the atmosphere. Now an international team of researchers has analyzed almost 40 years worth of data in order to quantify exactly what fraction of the change can be attributed to mankind based on events and trends in different regions.Read More

Physics

New invisibility cloak hides tiny three-dimensional objects of any shape

Scientists at UC Berkeley have developed a foldable, incredibly thin invisibility cloak that can wrap around microscopic objects of any shape and make them undetectable in the visible spectrum. In its current form, the technology could be useful in optical computing or in shrouding secret microelectronic components from prying eyes, but according to the researchers involved, it could also be scaled up in size with relative ease.Read More

Energy

Hybrid artificial photosynthesis technique produces hydrogen and methane

Not content with using hybrid artificial photosynthesis to turn CO2 emissions into plastics and biofuel, researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) now claim to have produced an enhanced system that uses water and solar energy to generate hydrogen, which is in turn used to produce methane, the main element of natural gas, from carbon dioxide. Generating such gases from a renewable resource may one day help bolster, or even replace, fossil fuel resources extracted from dwindling sub-surface deposits.Read More

Electronics

World's highest-performance single-molecule diode created

As electronics miniaturization heads towards a theoretical physical limit in the tens of nanometers, new methods of manufacturing are required to produce transistors, diodes, and other fundamental electronic components. In this vein, a new range of molecule-sized devices have been created in the laboratory, though with varying results in terms of efficiency and practicality. Now a group of researchers from Berkeley Lab and Columbia University claims to have created the highest-performing, single-molecule diode ever made, which is said to be 50 times better in performance and efficiency than anything previously produced.Read More

Environment

Artificial photosynthesis breakthrough turns CO2 emissions into plastics and biofuel

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel. Read More

Electronics

Optical antenna may allow LEDs to replace lasers in host of devices

By applying 120 year old radio frequency antenna theory to the much newer field of photonics, researchers at Lawrence Berkeley National Laboratory claim to have produced a prototype optical antenna that increases the intensity of emission from a nanorod light source by more than 115 times. This technique may offer the opportunity to replace power-hungry lasers in short-range optical communications devices with enhanced low-power LEDs. Read More

Science

Berkeley lab builds world record tabletop-size particle accelerator

Taking careful aim with a quadrillion watt laser, researchers at the US Department of Energy’s Lawrence Berkeley National Lab claim to have managed to speed up subatomic particles to the highest energies ever recorded for a compact accelerator. By blasting plasma in their tabletop-size laser-plasma accelerator, the scientists assert that they have produced acceleration energy of around of 4.25 giga-electron volts. Acceleration of this magnitude over the short distances involved correlates to an energy rise 1,000 times greater than that of a traditional – and very much larger – particle accelerator.Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement