Advertisement

Laser

Quantum Computing

New micro-ring resonator creates quantum entanglement on a silicon chip

The quantum entanglement of particles, such as photons, is a prerequisite for the new and future technologies of quantum computing, telecommunications, and cyber security. Real-world applications that take advantage of this technology, however, will not be fully realized until devices that produce such quantum states leave the realms of the laboratory and are made both small and energy efficient enough to be embedded in electronic equipment. In this vein, European scientists have created and installed a tiny "ring-resonator" on a microchip that is claimed to produce copious numbers of entangled photons while using very little power to do so.Read More

Electronics

First germanium-tin semiconductor laser directly compatible with silicon chips

Swiss scientists have created the first semiconductor laser consisting solely of elements of main group IV (the carbon group) on the periodic table. Simply, this means that the new device is directly compatible with other elements in that group – such as silicon, carbon, and lead – and so can be directly incorporated in a silicon chip as it is manufactured. This presents new possibilities for transmitting data around computer chips using light, which could result in potential transfer speeds exponentially faster than possible with copper wire and using only a fraction of the energy of today’s integrated circuits.Read More

Electronics

Prototype system paves way for huge, glasses-free 3D displays

Using red/blue filters (anaglyph), polarized (passive) or LED shutter (active) glasses are relatively simple ways of creating a 3D effect. Creating 3D pictures without viewers having to don any form of eyewear is a little trickier and is made even more so if you want really big 3D effects for a sports stadium or a billboard. To help address this, Austrian scientists working at the Vienna University of Technology (TU Vienna) and the company TriLite Technologies have developed a new kind of display just for this purpose that sends beams of light directly to the viewers’ eyes via a laser and a sophisticated mirror system. Read More

Games

iTager enables long-distance, open-air, mega-scale laser tag

Imagine laser tag with a million players all on the one battlefield. It's ridiculous to even think about, but the creators of iTager claim that their system makes it possible. It's a ground-up reimagining and re-engineering of laser tag replete with fully-wireless, remote-controllable systems that work in all weather conditions over a whopping 2,500 ft (760 m) and that can easily be mounted onto existing laser tag weapons (or even your hand or a bicycle) or purchased preinstalled on rifles the creators made themselves.Read More

Science

Berkeley lab builds world record tabletop-size particle accelerator

Taking careful aim with a quadrillion watt laser, researchers at the US Department of Energy’s Lawrence Berkeley National Lab claim to have managed to speed up subatomic particles to the highest energies ever recorded for a compact accelerator. By blasting plasma in their tabletop-size laser-plasma accelerator, the scientists assert that they have produced acceleration energy of around of 4.25 giga-electron volts. Acceleration of this magnitude over the short distances involved correlates to an energy rise 1,000 times greater than that of a traditional – and very much larger – particle accelerator.Read More

Science

World's fastest 2D camera captures 100 billion frames per second

Researchers at Washington University in St.Louis have built what they claim is the world's fastest 2D receive-only camera, which is able to capture images at a rate of up to 100 billion frames per second. Using a technique called Compressed Ultrafast Photography (CUP), the researchers have so far taken photographs of a number of properties of light propagation and behavior that are already pushing the dimensional limits of fundamental physics.Read More

Science

Quantum memory storage to help quantum communications go the distance

The technologies made possible by breakthroughs in quantum physics have already provided the means of quantum cryptography, and are gradually paving the way toward powerful, practical, everyday quantum computers, and even quantum teleportation. Unfortunately, without corresponding atomic memories to appropriately store quantum-specific information, the myriad possibilities of these technologies are becoming increasingly difficult to advance. To help address this problem, scientists from the University of Warsaw (FUW) claim to have developed an atomic memory that has both exceptional memory properties and a construction elegant in its simplicity.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement