Advertisement

Laser

Physics

Cesium atoms get a shake-up to create excitation in superfluid

Helium-4 superfluid is a fascinating substance. With properties that seemingly defy normal physics, it leaks straight through glass, bubbles up out of containers, flows around objects and even climbs up walls. As if superfluid helium-4 was not strange enough, in 1941 it was also predicted that it should contain an exotic, particle-like excitation – a quasiparticle – called a roton. After many years of trying to verify this prediction, researchers at the University of California now claim to have successfully created a roton structure in an atomic superfluid of cesium-133.Read More

Electronics

Optical antenna may allow LEDs to replace lasers in host of devices

By applying 120 year old radio frequency antenna theory to the much newer field of photonics, researchers at Lawrence Berkeley National Laboratory claim to have produced a prototype optical antenna that increases the intensity of emission from a nanorod light source by more than 115 times. This technique may offer the opportunity to replace power-hungry lasers in short-range optical communications devices with enhanced low-power LEDs. Read More

Quantum Computing

New micro-ring resonator creates quantum entanglement on a silicon chip

The quantum entanglement of particles, such as photons, is a prerequisite for the new and future technologies of quantum computing, telecommunications, and cyber security. Real-world applications that take advantage of this technology, however, will not be fully realized until devices that produce such quantum states leave the realms of the laboratory and are made both small and energy efficient enough to be embedded in electronic equipment. In this vein, European scientists have created and installed a tiny "ring-resonator" on a microchip that is claimed to produce copious numbers of entangled photons while using very little power to do so.Read More

Electronics

First germanium-tin semiconductor laser directly compatible with silicon chips

Swiss scientists have created the first semiconductor laser consisting solely of elements of main group IV (the carbon group) on the periodic table. Simply, this means that the new device is directly compatible with other elements in that group – such as silicon, carbon, and lead – and so can be directly incorporated in a silicon chip as it is manufactured. This presents new possibilities for transmitting data around computer chips using light, which could result in potential transfer speeds exponentially faster than possible with copper wire and using only a fraction of the energy of today’s integrated circuits.Read More

Electronics

Prototype system paves way for huge, glasses-free 3D displays

Using red/blue filters (anaglyph), polarized (passive) or LED shutter (active) glasses are relatively simple ways of creating a 3D effect. Creating 3D pictures without viewers having to don any form of eyewear is a little trickier and is made even more so if you want really big 3D effects for a sports stadium or a billboard. To help address this, Austrian scientists working at the Vienna University of Technology (TU Vienna) and the company TriLite Technologies have developed a new kind of display just for this purpose that sends beams of light directly to the viewers’ eyes via a laser and a sophisticated mirror system. Read More

Games

iTager enables long-distance, open-air, mega-scale laser tag

Imagine laser tag with a million players all on the one battlefield. It's ridiculous to even think about, but the creators of iTager claim that their system makes it possible. It's a ground-up reimagining and re-engineering of laser tag replete with fully-wireless, remote-controllable systems that work in all weather conditions over a whopping 2,500 ft (760 m) and that can easily be mounted onto existing laser tag weapons (or even your hand or a bicycle) or purchased preinstalled on rifles the creators made themselves.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning