Photokina 2014 highlights

Invisibility

Dr. Nicolas Stenger's microstructured polymer plate

Many of the current experimental "invisibility cloaks" are based around the same idea - light coming from behind an object is curved around it and then continues on forward to a viewer. That person is in turn only able to see what's behind the object, and not the object itself. Scientists from Germany's Karlsruhe Institute of Technology have applied that same principle to sound waves, and created what could perhaps be described as a "silence cloak."  Read More

Scientists have discovered that objects coated with a forest of carbon nanotubes can be ma...

Although Klingon-style disappearing spaceships may not be in our neighborhood any time soon, the technology that could allow a spaceship to vanish from sight may be here now. Scientists from the University of Michigan have successfully made a three-dimensional etched silicon image of a tank appear as a featureless black void, that completely blended in with the backdrop surrounding it. The secret: good ol’ carbon nanotubes.  Read More

A new 'invisibility cloak' utilizes the same effect that causes mirages to appear (Image: ...

You have no doubt seen mirages on the distant surfaces of hot highways before, looking like pools of water shimmering on the asphalt. Such illusions are caused by hot air above the road, which refracts light waves coming down into it from the cooler air above – in other words, the supposed “water” is actually the sky, its image being bent toward you by the low-lying hot air. Well, scientists at the University of Texas at Dallas have put the same principle to work in the lab, and created an invisibility cloak that can be easily switched on and off.  Read More

A CV90 Swedish infantry fighting vehicle fitted with the ADAPTIV panels (Image: BAE System...

Infrared imaging is used for a range of military applications - such as target acquisition, night vision, homing and tracking - which means that any vehicle with some kind of infrared “invisibility cloak” would hold significant advantages on the battlefield. BAE Systems has tested just such a technology that not only allows vehicles to blend into their surroundings, but can also let it mimic other vehicles or natural objects.  Read More

Duke University scientists have outlined a theory for the use of metamaterials in facilita...

The weird properties of artificially engineered metamaterials are at the core of research into invisibility cloaking, but engineers from Duke University in North Carolina suggest that these materials could also provide a boost to another of technology's quests - wireless power transmission. In this latest hard-to-get-your-head-around metamaterial scenario, it's not the cloaked object that "disappears" - it's the space between the charger and the chargee.  Read More

SEM image of a fabricated carpet cloak, the insets show the oblique view of the carpet clo...

Efforts to create a working "invisibility cloak" have generally involved the use of artificial materials with a negative refractive index known as metamaterials. Another promising technique involves the use of a natural crystal called calcite that boasts an optical property known as birefringence, or double-refraction. While both methods have proven successful in rendering very small objects invisible in specific wavelengths of light by bending and channeling light around them, both techniques require the "cloak" to be orders of magnitude larger than the object being concealed. Researchers are now reporting progress in overcoming this size limitation using a technology known as a "carpet cloak."  Read More

Part of the pink object is rendered invisbile to the naked eye under the calcite-based inv...

The quest to build a working “invisibility cloak” generally focuses on the use of metamaterials – artificially engineered materials with a negative refractive index that have already been used to render microscopic objects invisible in specific wavelengths of light. Now, using naturally occurring crystals rather than metamaterials, two research teams working independently have demonstrated technology that can cloak larger objects in the broad range of wavelengths visible to the human eye.  Read More

Scientists have determined that it's theoretically  possible to create a spacetime cloak t...

Take some light bending metamaterials, incorporate them into flexible fabric and you have yourself an invisibility cloak. That's the theory anyway, and it doesn't stop at hiding objects. Building on the optical invisibility research of Professor Sir John Pendry, researchers from Imperial College, London, have now proposed that similar metamaterials could be used to conceal entire events – get ready for the "Spacetime cloak".  Read More

Scottish researchers are reporting a "practical breakthrough" that could lead to the development of that most sought after of wardrobe items – the invisibility cloak. The concept of the invisibility cloak (not pictured) is based around harnessing the unique electromagnetic wave-bending properties of metamaterials, but this poses problems when it comes to creating flexible surfaces suitable for applications like clothing and contact superlenses for visual prostheses... problems which the new material design known as "Metaflex" hopes to address.  Read More

Elena Semouchkina holds the ceramic resonators that enable her to make objects appear invi...

We’ve covered a few different research efforts looking to develop “invisibility cloak” technology on Gizmag, including 3D metamaterials that negatively refract visible and near-infrared light and U-shaped “nano-rings” that manipulate light. The latest news sure to get Harry Potter fans excited comes out of Michigan Technical University where Elena Semouchkina, an associate professor of electrical and computer engineering, has found ways to use magnetic resonance to capture rays of visible light and route them around objects, rendering them invisible to the human eye.  Read More

Looking for something? Search our 28,548 articles