Decision time? Check out our latest product comparisons

Implant

The new sensor improves monitoring of cerebral pressure, which can lead to dementia

A new moisture-proof sensor has been developed, to monitor cerebral pressure that can lead to dementia. It was created by researchers at the Fraunhofer Institute for Biomedical Engineering IBMT in St. Ingbert in Germany. The sensor, that is similar to pressure sensors used by the auto industry, represents a shift from previous implants that allowed moisture to penetrate and destroy the device.  Read More

An experimental ear-powered chip, with a penny for scale

Our ears work by converting the vibrations of the eardrum into electrochemical signals that can be interpreted by the brain. The current for those signals is supplied by an ion-filled chamber deep within the inner ear – it’s essentially a natural battery. Scientists are now looking at using that battery to power devices that could be implanted in the ear, without affecting the recipient’s hearing.  Read More

A biodegradable integrated circuit during dissolution in water (Photo: Beckman Institute, ...

We’ve certainly been hearing a lot lately about tiny electronic devices that can do things such as delivering medication after being implanted in the body, measuring structural stress upon being attached to a bridge, or monitoring pollution after being placed in the environment. In all of these cases, the device has to be retrieved once it’s served its purpose, or just left in place indefinitely. Now, however, an interdisciplinary team of researchers have demonstrated “transient electronics,” which dissolve into nothing after a pre-determined amount of time.  Read More

Power delivery to the human heart from a 200MHz low-frequency transmitter (left) and a 1.7...

Implantable medical devices are becoming more common everyday. The problem is that no matter how sophisticated the devices are, most still depend on batteries for power. One solution to this is for the power source to remain outside the body and to beam the power to the device. However, that has its own difficulties because wireless power can’t penetrate very far through human tissue ... until now.  Read More

Retinal implant with power cable (Image: Retinal Implant AG)

Retinitis pigmentosa (RP) is a degenerative eye disease that affects 200,000 people in the United States and Europe and has left 15 million people permanently blind worldwide. German biotechnology firm Retina Implant AG has developed a microchip that provides a useful degree of artificial vision in patients who have been blind for even long periods. The 3 x 3 mm (0.118 in) chip is implanted below the surface of the retina where it electrically stimulates the optical tissues. After successful clinical trials in Germany, the chip is now being tested in Hong Kong and Britain before moving on to planned trials in the U.S.  Read More

Drawing of a Bio-Retina being inserted into an eye and affixed to the AMD damaged retina b...

At least 25-30 million people worldwide have age-related macular degeneration (AMD), one of the leading causes of blindness in middle-aged and older adults. The Israeli start-up Nano Retina has announced their new Bio-Retina, a tiny array of photodetectors which can be implanted directly on the retinal surface. Ready to enter clinical trials in 2013, the Bio-Retina restores vision to AMD sufferers almost immediately following the simple implantation process.  Read More

Wake Forest's muscle-implant-stretching machine

We all know that you need to exercise if you want to develop your muscles. As it turns out, however, exercise also makes lab-grown muscle implants more effective when introduced to the body. Scientists from North Carolina’s Wake Forest Baptist Medical Center have discovered that after being gently expanded and contracted, implants placed in lab animals were better able to stimulate new muscle growth than implants that were left “unexercised.”  Read More

This silicon wafer consists of glucose fuel cells of varying sizes; the largest is 64 by 6...

A new implantable fuel cell that harvests the electrical power from the brain promises to usher in a new generation of bionic implants. Designed by MIT researchers, it uses glucose within the cerebrospinal fluid surrounding the brain to generate several hundred microwatts of power without causing any detrimental effects to the body. The technology may one day provide a whole new level of reliability and self-efficiency for all sorts of implantable brain-machine interfaces that would otherwise have to rely on external power sources. If proven harmless, the method could be used to power implants that could, among other things, help the paralyzed regain the ability to walk.  Read More

A paralyzed woman has used the experimental BrainGate neural interface system to get herse...

Last April, for the first time since she became paralyzed 15 years ago, a 58 year-old woman was able to get herself a drink of coffee – she did so via a robotic arm, which was controlled by her thoughts. Although that rather astounding feat took place over a year ago, it was just made public today, in a report published in the journal Nature. The woman was a volunteer test subject, in a clinical trial of the experimental BrainGate neural interface system. Although still very much in development, the system could someday restore mobility to people who have suffered paralysis or limb loss.  Read More

Fraunhofer's experimental new artificial hip (right)

While modern artificial hips are made of a number of high-tech materials, metal is still often the material of choice for younger, more active patients. This is due mainly to the fact that it’s so robust. Unfortunately, however, difficulties can arise in the metal ball-and-socket interface – where the artificial head of the femur meets the artificial socket of the pelvis – if things aren't perfectly aligned. In particular, the metal surfaces can wear against one another, decreasing the longevity of the implant and potentially causing health problems in the patient. Now, researchers from Germany’s Fraunhofer Institute for Manufacturing Engineering and Automation are developing a new type of heavy-duty artificial hip, that contains no metal at all.  Read More

Looking for something? Search our 28,993 articles