Introducing the Gizmag Store

IBM

Computer rendition of SuperMUC rendered by SuperMUC (Image: Leibniz-Rechenzentrum der Baye...

An innovative cooling design for SuperMUC, Europe's most powerful supercomputer, will use warm water instead of air to keep tens of thousands of microprocessors at the optimal operating speed and increase peak performance. The system, which is said to cool components 4,000 times more efficiently, will also warm the Leibniz Supercomputing Centre Campus that hosts it during the winter months, generating expected savings of up to US$1.25 million per year.  Read More

Sequoia's 96 racks during installation (Photo: Lawrence Livermore National Laboratory)

Clocking a performance of 16.32 petaflop/s, IBM's Blue Gene/Q-class supercomputer Sequoia has become the fastest supercomputer in the world according to the latest TOP500 rankings released today. Sequoia, owned by the Department of Energy and based at the Lawrence Livermore National Laboratory, has relegated Fujitsu's K to second place.  Read More

IBM's lithium-air battery uses oxygen from the air to react with lithium ions and generate...

One of the main challenges faced by the Electric Vehicle (EV) industry is so-called “range anxiety.” Current lithium-ion batteries will provide a range of about 100 miles (161 km), limiting the commercial adoption of EVs in a market accustomed to the range and supporting infrastructure of gasoline-powered vehicles. If existing lithium-ion batteries were scaled up to match the range capacity of gas-powered vehicles, they would be unfeasibly large and heavy. Lithium-air batteries, which have the potential to provide energy densities that rivals traditional gasoline-powered engines, are seen as a possible solution. IBM has been researching such batteries and recently announced that it's bringing two companies with experience in electric vehicle materials onboard to aid in their development.  Read More

IBM and ASTRON (the Netherlands Institute for Radio Astronomy) are working to develop tech...

When completed in 2024, the Square Kilometre Array (SKA) will be the largest, most sensitive radio telescope ever created. It will consist of 3,000 individual ground-based dish antennas, linked to act as one big telescope – an arrangement known as an interferometer. While their combined total surface area will be about one square kilometer (0.39 sq mile), they will be spread out across a geographical area approximately 3,000 kilometers (1,864 miles) in width. They will be gathering about one exabyte of astronomical data per day, which is twice the amount of data that is handled by the World Wide Web on a daily basis. Today, IBM announced that it has partnered with ASTRON (the Netherlands Institute for Radio Astronomy), in an effort to develop computer systems that will be able read, analyze and store all of that data, and do so in an energy-efficient manner.  Read More

IBM's prototype 5.2 x 5 .8 mm Holey Optochip

Last Thursday at the Optical Fiber Communication Conference in Los Angeles, a team from IBM presented research on their wonderfully-named “Holey Optochip.” The prototype chipset is the first parallel optical transceiver that is able to transfer one trillion bits (or one terabit) of information per second. To put that in perspective, IBM states that 500 high-def movies could be downloaded in one second at that speed, while the entire U.S. Library of Congress web archive could be downloaded in an hour. Stated another way, the Optochip is eight times faster than any other parallel optical components currently available, with a speed that’s equivalent to the bandwidth consumed by 100,000 users, if they were using regular 10 Mb/s high-speed internet.  Read More

IBM scientists have created a flexible silicon probe, that could allow for more precise st...

IBM scientists in Zurich have created a proof-of-concept device, that could change the way that human tissue samples are analyzed. Presently, samples must be stained with a biomarker solution in order to detect the presence of a disease. The staining process can be quite involved, however, plus it is subject to error – too much of the solution can cause inaccurate results, for instance. Additionally, it can sometimes be difficult to perform enough tests using the small amount of tissue extracted in most biopsies. The IBM technology, though it still involves staining, is said to offer a potential solution to these shortcomings.  Read More

German scientists have created the world's smallest magnetic data storage unit, which can ...

If you’re impressed with how much data can be stored on your portable hard drive, well ... that’s nothing. Scientists have now created a functioning magnetic data storage unit that measures just 4 by 16 nanometers, uses 12 atoms per bit, and can store an entire byte (8 bits) on as little as 96 atoms – by contrast, a regular hard drive requires half a billion atoms for each byte. It was created by a team of scientists from IBM and the German Center for Free-Electron Laser Science (CFEL), which is a joint venture of the Deutsches Elektronen-Synchrotron DESY research center in Hamburg, the Max-Planck-Society and the University of Hamburg.  Read More

IBM has released its Next 5 in 5 predictions for 2011

It’s late December, and that means that it’s time once again for IBM’s Next 5 in 5 list. Every year since 2006, the corporation has put together an annual roundup of the top five emerging technologies that its researchers feel “will change the way we work, live and play” within the next five years. Here’s a look at what caught their attention this year.  Read More

IBM has unveiled two prototype computer chips that are said to emulate the human brain (Im...

In April, the University of Southern California made the headlines when it announced that researchers there had created a functioning synthetic synapse circuit using carbon nanotubes. Well, today IBM unveiled a new class of experimental computer chips that are designed to emulate the human brain’s abilities for perception, action and cognition. According to the company, “The technology could yield many orders of magnitude less power consumption and space than used in today’s computers.”  Read More

Illustration from IBM's patent application for a morphing touchscreen keyboard

While most people prefer using physical keyboards and only tolerate virtual keyboards on their mobile devices for the sake of portability, onscreen keyboards do potentially offer a flexibility that can’t be matched by physical keyboards. It’s this flexibility that IBM is looking to take advantage of with the company recently filing a U.S. patent application for a morphing touchscreen keyboard interface that would automatically resize, reshape and reposition keys based on a user’s typing style.  Read More

Looking for something? Search our 26,492 articles