Advertisement

Hydrophobic

— Science

Lotus leaf inspires Finnish researchers to develop optical display from water and air

Researchers at Aalto University in Finland have discovered a novel way to write and present information using only water and air. They used the water-repelling properties of the lotus leaf as inspiration for an experiment with a superhydrophobic (“water-repelling”), dual-scale surface that allows the writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales. The research was carried out in partnership with the Nokia Research Center and University of Cambridge and was led by Dr. Robin Ras at Aalto University. Read More
— Science

Liquid and ice "SLIPS" off new ultra smooth surface

Although advances in refrigeration technology means we don’t need to defrost the freezer as often as we used to, many of us are still forced to carry out the task on a regular basis lest we find the frosty walls closing in to claim that tub of ice cream. Now a team from Harvard University has developed ultra smooth slippery surfaces that prevent ice sheets from developing by allowing even tiny drops of condensation or frost to simply slide off. As well as keeping freezers frost-free, the technology could be used to prevent ice build up on metal surfaces in wind turbines, marine vessels, and aircraft. Read More
— Science

Graphene used to rust-proof steel

Hexavalent chromium compounds are a key ingredient in coatings used to rust-proof steel. They also happen to be carcinogenic. Researchers, therefore, have been looking for non-toxic alternatives that could be used to keep steel items from corroding. Recently, scientists from the University at Buffalo announced that they have developed such a substance. It’s a varnish that incorporates graphene, the one-atom-thick carbon sheeting material that is the thinnest and strongest substance known to exist. Read More
— Science

Reusable oil-absorbing nanosponges could soak up oil spills

Last week we looked at the development of “hydrate-phobic” surfaces that could assist in the containment of oil leaks in deep water. Now, by adding boron to carbon while growing nanotubes, researchers have developed a nanosponge with the ability to absorb oil spilled in water. Remarkably, the material is able to achieve this feat repeatedly and is also electrically conductive and can be manipulated with magnets. Read More
— Science

“Hydrate-phobic” surface coatings to keep oil and gas pipes flowing

As the world’s appetite for oil and gas continues to increase while access to easily accessible reserves decreases, deep-sea oil and gas wells are being positioned in ever-deeper waters. The dangers and difficulties faced in such operations were highlighted in 2010 with the Deepwater Horizon oil spill. While placing a containment dome over a leak and piping the oil to a surface storage vessel had worked on leaks in shallower water, the attempt to do the same on the Deepwater Horizon’s largest leak failed when the formation of methane hydrate crystals blocked the opening at the top of the dome. Now researchers at MIT have developed surface coatings that can inhibit the buildup of these methane hydrates and keep the gas and oil flowing. Read More
— Health & Wellbeing

Material implants slowly release medicine over period of months

Scientists have developed a new material that can slowly release medication over a period of several months. It's hoped that the "superhydrophobic material" may one day lead to implants that would assist in the treatment of chronic pain, and in the prevention of recurring cancer tumors, by gradually releasing medication over a period of months. The team of scientists is now planning in vivo experiments to gauge the effectiveness of the material in living organisms. Read More
— Mobile Technology

Liquipel nanocoating adds invisible waterproof coating to mobile devices

We all know that water and mobile electronic devices aren’t a good mix. But living on a world whose surface is around 70 percent water can sometimes make it hard to keep the two separate. While wrapping your device in a waterproof case will provide protection, they add bulk and can sometimes affect usability. California-based company Liquipel claims to have developed a hydrophobic nanocoating one thousand times thinner than a human hair that can be applied to a smartphone to protect it from accidental spills without affecting its functionality. Read More
— Science

Floating weed inspires high-tech waterproof coating

It may be an invasive weed that’s fouling waterways in the U.S., Australia and other countries, but it turns out that Salvinia molesta has at least one good point – it’s inspired a man-made coating that could help ships stay afloat. The upper surface of the floating plant’s leaves are coated with tiny water-repellent hairs, each of which is topped with a bizarre eggbeater-like structure. These hairs trap a layer of air against the leaf, reducing friction and providing buoyancy, while the eggbeaters grab slightly at the surrounding water, providing stability. Scientists at Ohio State University have successfully replicated these hairs in plastic, creating a buoyant coating that is described as being like “a microscopic shag carpet.” Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement