Advertisement
more top stories »

Harvard


— Biology

The Hunger Pains: Mice genetically engineered to not feel them

Hunger pains are the bane of any dieter's existence, kicking in even when skipping a single meal and goading the sufferer to indulge their desire for food. Controlling hunger is now better understood as neuroscientists tease apart why we (well, our model mouse cousins) feel hunger. Mind-bendingly, the same researchers have used genetic therapies to create feelings of satiety where none would otherwise exist. Read More
— Digital Cameras

Researchers advance ultra-thin flat lens to capture perfect colors

Ultra-thin flat lenses suitable for photography are one step closer after a team of researchers at Harvard University made a major leap forward with its prototype wafer-thin flat lens. The new lens builds on the original prototype, which we first heard about in 2012, by using an achromatic metasurface to focus different wavelengths of light at the same point. Read More
— Health & Wellbeing

Oil-exuding silicone could prevent bacterial infections

Whenever foreign objects such as catheters, implants or other devices are placed within the human body, there's a danger that bacterial colonies known as biofilms could collect on them, leading to infections. Now, however, scientists at Harvard University's Wyss Institute have created a material that's too slippery for those biofilms to cling onto. It works by continuously releasing oil. Read More
— Health & Wellbeing

Researchers shed new light on skin-based immune system

The skin is the body's first line of defense against infection, with an extensive network of skin-based immune cells responsible for detecting the presence of foreign invaders. However, in addition to pathogens, an immune response can be triggered by allergens or even our own cells, resulting in unwanted inflammation and allergies. Researchers have now shed new light on the way the immune system in our skin works, paving the way for future improvements in tackling infections, allergies and autoimmune diseases. Read More
— Science

Harvard coloring tech could be an attractive alternative to paint

Most people probably don't think of a coating of paint as being a particularly major component of a manufactured item. If the object is quite large, however, or if a lot of them are being made, paint can add considerably to its weight and/or production costs. With that in mind, researchers from Harvard University's Laboratory for Integrated Science and Engineering have created a new lightweight, low-cost coloring technology for both rough and smooth surfaces. Read More
— Medical

Vaccine self-assembles into 3D structure to better fight cancer and deadly infections

Scientists have had some success activating the body's immune system to take the fight to cancer and other diseases, a process known as immunotherapy. Now, a new method developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University could advance this form of treatment even further. The technique involves the injection of biomaterials that assemble into 3D scaffolds inside the body to accommodate huge amounts of immune cells, a process that could trigger an attack on deadly infections ranging from HIV to cancer to Ebola. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement