Introducing the Gizmag Store

Graphene

Graphene is a one-atom-thick gauze of carbon atoms resembling chicken wire (Image: Alexand...

The researchers who unveiled graphene in 2004 and who were awarded the Nobel Prize in 2010 for “groundbreaking experiments regarding the two-dimensional material" have led new research that reveals more about the electronic properties of the wonder material. The team says their findings promise to accelerate research looking at ways to build graphene-based devices such as touch-screens, ultrafast transistors and photodetectors, and will potentially open up countless more electronic opportunities.  Read More

The graphene coating, seen above as a dark blue patch connected to gold contacts, generate...

Hydroelectricity is the most widely used form of renewable energy, supplying around 20 percent of the world’s electricity in 2006, which accounted for about 88 percent of electricity from renewable sources. Now researchers at the Rensselaer Polytechnic Institute have developed a new method to harvest energy from flowing water using a nanoengineered graphene coating. The new technology only produces small amounts of electricity so isn’t aimed at large scale electricity production, but rather at self-powered microsensors to be used in oil exploration.  Read More

Two of the different shapes in which graphene grains can form, using traditional productio...

Graphene, the "wonder material" composed of single-atom-thick carbon sheets, is currently finding its way into a variety of electronic devices including computer chips, capacitors, transistors and batteries, just to name a few. It is typically created using a chemical vapor deposition process, in which carbon-containing gases are made to decompose on a copper foil substrate. The performance of the material may be limited, however, due to the fact that the individual graphene grains in one sheet are not of a consistent size or shape, and usually are larger than a single crystal. That could be about to change, though, as a new production method that utilizes hydrogen gas is promising higher-performance graphene with uniform, single-crystal grains.  Read More

A single layer of graphene (Image: AlexanderAlUS via Wikipedia)

Earlier this year we ran a story on molybdenite, a mineral that held an advantage over graphene for use in electronic devices due to the existence of "band gaps" in the material that are needed for devices such as transistors, computer chips and solar cells. Now MIT researchers have overcome that deficiency by finding a way to produce graphene in significant quantities in a two- or three-layer form with the layers arranged just right to give the material the much-desired band gap.  Read More

A new method for graphene production has been discovered, that involves burning pure magne...

Graphene, the one-atom-thick carbon sheet material that could revolution everything from energy storage to computer chips, can now be made much more easily – at least, that’s what scientists from Northern Illinois University (NIU) are telling us. While previous production methods have included things like repeatedly splitting graphite crystals with tape, heating silicon carbide to high temperatures, and various other approaches, the latest process simply involves burning pure magnesium in dry ice.  Read More

Researchers have developed an atmospheric pressure CVD method for producing graphene using...

Any regular reader of this site will be aware of the huge potential of graphene – the chicken-wire-like lattice of carbon atoms arranged in thin sheets a single atomic layer thick that promises to revolutionize the fields of data storage, energy storage and computer chips, just to name a few. But for this potential to be fully realized, meaningful quantities of the material need to be produced economically and at a consistent quality. Current graphene manufacturing processes are complicated and generally offer unpredictable results regarding the material’s quality. Now a research team from the University of Pennsylvania has succeeded in creating high quality graphene using readily available materials and manufacturing processes that can be scaled up to industrial levels.  Read More

Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a hon...

Graphene has already brought us the world’s smallest transistor, a triple-mode, single transistor amplifier and a supercapacitor that can store as much energy as a battery while recharging in seconds. And these are sure to just be the tip of the iceberg. The latest breakthrough from the wonderful world of graphene is a new graphene field effect transistor (GFET) that boasts a record high-switching performance. The device promises improved performance for future electronic devices and means graphene could potentially replace silicon, or at least be used side by side with silicon, in electronic devices.  Read More

Molybdenite could be used to make smaller and more energy efficient transistors

Researchers have uncovered a material that they say has distinct advantages over traditional silicon and even graphene for use in electronics. Called molybdenite (MoS2), this mineral is abundant in nature and is commonly used as an element in steel alloys or, thanks to its similarity in appearance and feel to graphite, as an additive in lubricant. But the mineral hadn’t been studied for use in electronics, which appears to have been an oversight with new research showing that molybdenite is a very effective semiconductor that could enable smaller and more energy efficient transistors, computer chips and solar cells.  Read More

Scientists have discovered that tiny sonic booms cause carbon nanotubes to shear off from ...

Single-walled carbon nanotubes are an essential component of many innovations in the field of nanotechnology, with particular potential in the fields of electronics, optics, and automotive technology. Until recently, however, one of the processes for synthesizing them had not fully been understood. More precisely, no one was sure exactly what caused the nanotubes to break, or how to better control the process for the creation of higher-quality tubes. Now, researchers from Rhode Island's Brown University and the Korea Institute of Science and Technology (KIST) think they have it figured out – it all comes down to tiny sonic booms pressing in on the tubes from either end.  Read More

High surface area of graphene make supercapcitors possible

A breakthrough in supercapacitor performance has been achieved with the development of a device that can store as much energy as a battery while recharging in seconds. The graphene-based supercapacitor being developed in the U.S. by researchers at Nanotek Instruments can store as much energy per unit mass as nickel metal hydride batteries and could one day be used to help deliver almost instant charging to recharge mobile phones, digital cameras or micro electric vehicles.  Read More

Looking for something? Search our 26,558 articles