Shopping? Check out our latest product comparisons

Graphene

Dr Nair shows his one micron thick graphene oxide film research sample (Photo: University ...

Ever since University of Manchester scientists Andre Geim and Konstantin Novoselov first isolated flakes of graphene in 2004 using that most high-tech pieces of equipment - adhesive tape - the one-atom sheet of carbon has continued to astound researchers with its remarkable properties. Now Professor Sir Andre Geim, (he's now not only a Nobel Prize winner but also a Knight Bachelor), has led a team that has added superpermeability with respect to water to graphene's ever lengthening list of extraordinary characteristics.  Read More

The world's first molybdenite microchip has been successfully tested in Switzerland.

Back in February, Darren Quick wrote about the unique properties of Molybdenite and how this material, previously used mostly as a lubricant, could actually outshine silicon in the construction of transistors and other electronic circuits. In brief: it's much more energy efficient than silicon, and you can slice it into strips just three atoms thick - meaning that you can make transistors as much as three times smaller than before, and make them flexible to boot. Well, the technology has now been proven with the successful testing of the world's first molybdenite microchip in Switzerland. Does this mean Lausanne will become known as "Molybdenite Valley?"  Read More

The graphene foam is macroscopic in total size (left), yet has nanoscopic internal structu...

For some time now, scientists have known that certain nanostructures are very sensitive to the presence of various chemicals and gases, making them good candidates for use in explosives-detecting devices. Unfortunately, because they're so small, mounting a single nanostructure within such a device would be an extremely fiddly and costly process. They would also be quite fragile, plus it would be difficult to clean the detected gas from them, so they could be reused. Recently, however, scientists from New York's Rensselaer Polytechnic Institute have figured out a solution to those problems. They have created a postage stamp-sized piece of foam made from one continuous piece of graphene, that is easy to manipulate, flexible, rugged, simple to neutralize after each use ... and is ten times more sensitive than traditional polymer sensors.  Read More

A crumpled graphene ball created by Northwestern University researchers inspired by a tras...

We've written a lot about the potential of using graphene in electronics and materials science, but there are challenges when it comes to producing and utilizing these one-atom-thick sheets of carbon on a large scale. While a lack of an internal structure provides graphene with an abundance of surface area, sheets of the material tend to stick together like a stack of paper, resulting in a reduction in surface area and effectiveness. Now, taking inspiration from a trashcan of crumpled-up papers, Northwestern University researchers have developed a new form of graphene that can't be stacked.  Read More

Researchers have sandwiched layers of graphene between layers of boron nitrate to create a...

Since its discovery in 2004, the two-dimensional layer of carbon atoms known as graphene has promised to revolutionize materials science, enabling flexible, transparent touch displays, lighter aircraft, cheaper batteries and faster, smaller electronic devices. Now in what could be a key step towards replacing silicon chips in computers, researchers at the University of Manchester have sandwiched two sheets of graphene with another two-dimensional material, boron nitride, to create what they have dubbed a graphene "Big Mac".  Read More

An artist's concept of graphene, buckyballs and C70 superimposed on an image of the Helix ...

Human beings may have only discovered how to create the one-atom-thick sheets of carbon atoms known as graphene in 2004 but it appears the universe could have been churning out the stuff since much earlier than that. While not conclusive proof its existence in space, NASA’s Spitzer Space Telescope has identified the signature of graphene in two small galaxies outside our own. If confirmed, it would be the first-ever cosmic detection of the material and could hold clues to how our carbon-based life forms such as ourselves developed.  Read More

Postdoctoral researcher Yu Zhu with the graphene-based hybrid film on a flexible plastic s...

Graphene promises to revolutionize electronics but we’re still waiting for graphene-based technologies to hit the market. Rice University researchers have now created transparent, graphene-based electrodes that they say could be the “killer app” that finally puts graphene into the commercial spotlight. The graphene-based electrodes could be used to replace the increasingly expensive indium tin oxide (ITO) in touch-screen displays, photovoltaic solar cells and LED lighting.  Read More

Graphene is a one-atom-thick gauze of carbon atoms resembling chicken wire (Image: Alexand...

The researchers who unveiled graphene in 2004 and who were awarded the Nobel Prize in 2010 for “groundbreaking experiments regarding the two-dimensional material" have led new research that reveals more about the electronic properties of the wonder material. The team says their findings promise to accelerate research looking at ways to build graphene-based devices such as touch-screens, ultrafast transistors and photodetectors, and will potentially open up countless more electronic opportunities.  Read More

The graphene coating, seen above as a dark blue patch connected to gold contacts, generate...

Hydroelectricity is the most widely used form of renewable energy, supplying around 20 percent of the world’s electricity in 2006, which accounted for about 88 percent of electricity from renewable sources. Now researchers at the Rensselaer Polytechnic Institute have developed a new method to harvest energy from flowing water using a nanoengineered graphene coating. The new technology only produces small amounts of electricity so isn’t aimed at large scale electricity production, but rather at self-powered microsensors to be used in oil exploration.  Read More

Two of the different shapes in which graphene grains can form, using traditional productio...

Graphene, the "wonder material" composed of single-atom-thick carbon sheets, is currently finding its way into a variety of electronic devices including computer chips, capacitors, transistors and batteries, just to name a few. It is typically created using a chemical vapor deposition process, in which carbon-containing gases are made to decompose on a copper foil substrate. The performance of the material may be limited, however, due to the fact that the individual graphene grains in one sheet are not of a consistent size or shape, and usually are larger than a single crystal. That could be about to change, though, as a new production method that utilizes hydrogen gas is promising higher-performance graphene with uniform, single-crystal grains.  Read More

Looking for something? Search our 27,894 articles