Shopping? Check out our latest product comparisons

Graphene

Thomas Edison with his nickel-iron rechargeable battery in 1910 (Photo: Smithsonian)

A green, rechargeable battery that is suitable for powering electric vehicles and stationary power storage applications, and that would survive tens of thousands of charge cycles in a useful life of 100 years without loss of capacity. What could be a better innovation for our times? Such a battery has been developed, and recently improved by Stanford researchers. Oh, one other thing. The battery was invented by Thomas Edison in 1901.  Read More

Atomic force micrograph of the olympicene molecule

Chemistry isn't about to be left out of the buzz surrounding the upcoming 2012 Summer Olympics in London. British chemists have collaborated with IBM Research - Zurich to develop and image a molecule just 1.2 nanometers wide that looks like the five Olympic rings.  Read More

This drawing shows a double-walled carbon nanotube. Each tube is made of a rolled-up sheet...

Stanford researchers have found that concentric carbon nanotubes, with the outer layer riddled by defects and impurities, could be a cheap alternative for some of the platinum catalysts that convert hydrogen and oxygen into water in fuel cells and metal-air batteries.  Read More

A piece of steel treated with the graphene varnish, in front of an untreated sample

Hexavalent chromium compounds are a key ingredient in coatings used to rust-proof steel. They also happen to be carcinogenic. Researchers, therefore, have been looking for non-toxic alternatives that could be used to keep steel items from corroding. Recently, scientists from the University at Buffalo announced that they have developed such a substance. It’s a varnish that incorporates graphene, the one-atom-thick carbon sheeting material that is the thinnest and strongest substance known to exist.  Read More

A new efficiency record of 8.6 percent for graphene solar cells using graphene doped with ...

Doping graphene with trifluoromethanesulfonyl-amide (TFSA) has enabled researchers at the University of Florida (UF) to set a new efficiency record for graphene solar cells. While the record-breaking efficiency of 8.6 percent is well short of the efficiencies seen in other types of solar cells, it is a big improvement over previous graphene solar cells that saw efficiencies ranging up to 2.9 percent. The development provides hope for cheaper, durable graphene solar cells in the future.  Read More

By sandwiching a layer of ferric chloride molecules between two sheets of graphene (pictur...

Currently, virtually all touchscreen displays found in our electronic devices rely on a coating of indium tin oxide (ITO). It is used because of its electrical conductivity, its optical transparency, and the ease with which it can be deposited onto a display as a thin film. Using graphene, researchers at the University of Exeter have developed a viable alternative to increasingly expensive ITO that they claim is the “most transparent, lightweight and flexible material ever for conducting electricity.”  Read More

A graphene sensor effectively tattooed onto a tooth can be used to detect bacteria and so ...

A graphene sensor effectively tattooed onto a tooth can be used to detect bacteria and so wirelessly monitor oral health, research has shown. Graphene printed onto water-soluble silk can be "bio-transferred" onto organic materials such as tooth enamel. By incorporating antimicrobial peptides and a resonant coil, individual bacteria cells can be detected without need of an onboard power supply or wired connections.  Read More

Schematic showing the structure of laser scribed graphene supercapacitors created by UCLA ...

The wonders of graphene seem to know no bounds. Not only is it one of the strongest materials known, is both highly conductive and piezoelectric, it can generate electricity from flowing water and now it is being used to make better supercapacitors. Using a DVD writer, a team of UCLA researchers has invented a new process for making high quality graphene electrodes and used these electrodes to make a new species of supercapacitor. Though the work is in the early stages of development, it could lay a foundation for supercapacitor-based energy storage systems suitable for flexible portable electronic devices.  Read More

Lithium atoms (red) deposited on graphene were shown to give the material piezoelectric qu...

Scientists have succeeded in endowing graphene with yet another useful property. Already, it is the thinnest, strongest and stiffest material ever measured, while also proving to be an excellent conductor of heat and electricity. These qualities have allowed it to find use in everything from transistors to supercapacitors to anti-corrosion coatings. Now, two materials engineers from Stanford University have used computer models to show how it could also be turned into a piezoelectric material – this means that it could generate electricity when mechanically stressed, or change shape when subjected to an electric current.  Read More

Scientists have determined that graphene could be put to use as the world's thinnest anti-...

It seems like the uses for graphene just won’t stop coming. The ultra-strong sheet material, made from bonded carbon atoms, has so far shown promise for use in transistors, computer chips, DNA sequencing, and batteries ... just to name a few possibilities. Now, scientists have discovered that it can also be used as a very effective anti-corrosion coating – and at just one atom in thickness, it’s thinner than any of the alternatives.  Read More

Looking for something? Search our 27,809 articles