Highlights from the 2014 LA Auto Show

Graphene

A diagram of the new graphene production technique

Graphene is very thin, incredibly strong, electrically conductive and chemically inert, allowing it to be used in a wide range of technologies. It's also rather difficult to work with, however, limiting its practicality. That may be about to change, as researchers at MIT and the University of Michigan have devised a new method of large-scale graphene production.  Read More

Scientists have found an alternative to graphene, that has the added bonus of self-assembl...

Graphene may be talked about as the future wonder material (and for that matter, the present one), but it has one critical deficiency. It lacks a natural bandgap, the physical trait that puts the “semi” in “semiconductor," so it has to be doped to become effective. Enter Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 ... well, you can refer to it as a metal-organic graphene analogue for now. In addition to having a natural band gap, it’s able to self-assemble and represents a whole family of compounds that’s exciting to researchers for its novel properties.  Read More

Bottles filled with water, detergent and graphene flakes – the graphene absorbs a small am...

It is one atom thick and touted to be stronger than steel. Graphene has captured the scientific and public imagination as the wonder material of the 21st century. Now, researchers at Trinity College Dublin have found a way to extract the substance from graphite – using a kitchen blender and some liquid soap.  Read More

Jacob D Lanphere, a Ph.D. student at UC Riverside, holds a sample of graphene oxide

I've been waiting for some time now to write a headline along the lines of "scientists discover thing that graphene is not amazing at" ... and here it is. Everybody’s favorite nanomaterial may have a plethora of near-magical properties, but as it turns out, it could also be bad for the environment – and bad for you, too.  Read More

This jury-rigged, lab-built graphene speaker is already delivering better sound quality th...

Graphene is frankly just showing off at this point. Not content with breezing in and smashing records in solar efficiency, kicking the butt of lithium-ion batteries, being the strongest known material in the Universe, being 1,000 times more light-sensitive than any known camera sensor and a thousand other achievements, now this smug supermaterial is having a crack at audio. How’s it going? Well, with basically zero acoustic development, a graphene loudspeaker is already boasting a better frequency response curve than a set of Sennheiser MX-400s.  Read More

The Zhong group from U-M responsible for pioneering a new graphene-based photodetector (Ph...

Thermal imaging has already found its way onto smartphones, but a team of researchers from the University of Michigan (U-M) have gone even further with the creation of an ultrathin graphene-based light detector. Being only slightly thicker than two sheets of graphene, the approach has the potential to put infrared heat detecting technology into a contact lens.  Read More

Scientists at Stanford University have found a way of creating artificial diamonds out of ...

Pressure makes diamonds, but according to recent findings, there may also be a much quicker, hassle-free way. A team of researchers at Stanford University has stumbled upon a new way of turning graphite (the material used for pencil leads) into a diamond-like carbon structure simply by applying hydrogen over a platinum substrate, without the need to apply external pressure of any kind. The discovery could lead to easier and more flexible manufacturing of diamonds used in cutting tools and other industrial devices.  Read More

Instead of the usual carbon atoms, artificial graphene is made from crystals of traditiona...

Graphene is truly a 21st-century wonder material, finding use in everything from solar cells to batteries to tiny antennas. Now, however, a group of European research institutes have joined forces to create a graphene knock-off, that could prove to be even more versatile.  Read More

This schematic illustration of a graphene plasmonic nano-antenna shows how short wavelengt...

Smart dust. Utility fog. Programmable matter. Grey and blue goo. Cooperating swarms of micron-sized devices (motes) offer completely new solutions and capabilities that can hardly be imagined. However, cooperation requires communication, and conventional radio or optical networking simply isn't practical at this size. Now researchers at Georgia Tech have invented a plasmonic graphene nano-antenna that can be efficiently used at millimeter radio wavelengths, taking one more step toward smart dust.  Read More

Crystal structure of sodium bismuthide (Na3Bi), one of the newly discovered 3D topological...

Exciting times are ahead in the high-tech industries with the discovery by three independent groups that a new class of materials mimic the special electronic properties of graphene in 3D. Research into these superfast massless charge carriers opens up a wide range of potential applications in electronics, including smaller hard drives with more storage capacity, faster transistors and more efficient optical sensors.  Read More

Looking for something? Search our 29,487 articles