An international team of scientists has obtained the world’s first single-shot images of intact viruses – a technology that could ultimately lead to moving video of molecules, viruses and live microbes. The team was also able to successfully utilize a new shortcut for determining the 3D structures of proteins. Both advances were achieved using the world’s first hard X-ray free-electron laser – the Linac Coherent Light Source (LCLS) – which scientists hope could revolutionize the study of life. Read More
If you want to obtain moving images of high-speed molecular processes at an atomic scale, one of the best facilities in the world is the X-ray Free Electron Laser (X-FEL) at Stanford University. Should you wish to use it, however, you’ll have get on a waiting list, then bring your materials to its California home once it’s your turn. If you’re thinking of building your own, you’d better start saving now – Stanford’s laser reportedly cost several hundred million dollars to build, and the cost of a new European X-FEL has been set at one billion euro (US$1.3 billion). Researchers from the Netherlands’ Eindhoven University of Technology (TU/e), however, have recently announced the development of a tabletop “poor man’s X-FEL.” It performs some of the same key functions as the big laser, but costs under half a million euro (US$656,006). Read More
The term Directed Energy Weapon (DEW) evokes images of Star Wars-style ray guns blasting aircraft from the skies and laser toting creatures from the far reaches of outer space, but there are also non-lethal forms of these weapons under development for present day military or non-military applications. Boeing has just received a USD$38 million contract to develop a high powered microwave (HPM) airborne demonstrator for the U.S. Air Force Research Laboratory’s (AFRL) Counter-electronics High power microwave Advanced Missile Project (CHAMP). Read More
Boeing has won a U.S. Navy contract worth up to $163 million to develop the Free Electron Laser (FEL), a weapon system that the company says "will transform naval warfare in the next decade by providing an ultra-precise, speed-of-light capability and unlimited magazine depth to defend ships against new, challenging threats, such as hyper-velocity cruise missiles." The envisioned level of precision would enable U.S. Navy ships to deliver nonlethal or lethal force to targets with power and minimal collateral damage. Read More