Top 100: The most desirable cars of all time


An organic single-crystal transistor made out of rubrene (red crystal) (Image: Rutgers Uni...

Silicon-based solar cells, by far the most prevalent type of solar cell available today, might provide clean, green energy but they are bulky, rigid and expensive to produce. Organic (carbon-based) semiconductors are seen as a promising way to enable flexible, lightweight solar cells that would also be much cheaper to produce as they could be “printed” in large plastic sheets at room temperature. New research from physicists at Rutgers University has strengthened hopes that solar cells based on organic semiconductors may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternative energy source to fossil fuels.  Read More

Postdoctoral associate Jae-Hee Han, left, graduate student Geraldine Paulus and associate ...

The size and efficiency of current photovoltaic (PV) cells means most people would probably have to cover large areas of their rooftops with such cells to even come close to meeting all their electricity needs. Using carbon nanotubes, MIT chemical engineers have now found a way to concentrate solar energy 100 times more than a regular PV cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.  Read More

Excitonics could provide us with faster computers and better communication speeds - except...

Much of today's research in electronics is geared towards obtaining faster computing and higher communication speeds. Researchers at UC San Diego are no exception, and have recently announced they have made another important step towards achieving exciton-based computation at room temperatures. Excitonics exploits the unique properties of excitons instead of the usual electrons, and promises much faster performance by interfacing more naturally with optical communications such as fiber optics.  Read More

Looking for something? Search our 29,877 articles
Editor's Choice
Product Comparisons