Advertisement

Entanglement

Quantum Computing

New chip paves the way for optical quantum technology in laptops and smartphones

In quantum physics, entangled photons are the cornerstone of much cutting-edge technology research, including quantum communications, computing, and encryption. Now an international team of researchers claims to have incorporated a range of quantum technologies on a single integrated chip that is compatible with existing fiber and semiconductor applications, and may soon provide the means to build quantum circuits directly into laptops and cell phones.Read More

Science

Triple entanglement feat adds new twist to quantum cryptography

In the world of quantum mechanics, entanglement is a weird realm where particles that were once joined exhibit mirror-opposite reactions when separated, even when they are vast distances apart. Now researchers from the University of Vienna and the Universitat Autonoma de Barcelona have added a new twist to this phenomenon, by entangling three photons and adding a 3-D corkscrew motion to effectively allow multiple recipients to simultaneously receive information securely encoded in the one transmission.Read More

Physics

Macroscopic quantum entanglement achieved at room temperature

In quantum physics, the creation of a state of entanglement in particles any larger and more complex than photons usually requires temperatures close to absolute zero and the application of enormously powerful magnetic fields to achieve. Now scientists working at the University of Chicago and the Argonne National Laboratory claim to have created this entangled state at room temperature on a semiconductor chip, using atomic nuclei and the application of relatively small magnetic fields.

Read More

Quantum Computing

Quantum computers inch closer to reality thanks to entangled qubits in silicon

Practical quantum computers are still years away, but lately the pace of research seems to have picked up. After building the basic blocks of a quantum computer in silicon and storing quantum information for up to 30 seconds, scientists at the University of New South Wales (UNSW) have now violated a principle of classical physics to demo for the first time a pair of entangled, high-fidelity quantum bits (qubits) in silicon. The advance could help unleash the power of a new kind of computation that would affect everything from data cryptography to drug design, overnight deliveries and subatomic particle experiments.Read More

Quantum Computing

New dimensions of quantum information added through hyperentanglement

In quantum cryptography, encoding entangled photons with particular spin states is a technique that ensures data transmitted over fiber networks arrives at its destination without being intercepted or changed. However, as each entangled pair is usually only capable of being encoded with one state (generally the direction of its polarization), the amount of data carried is limited to just one quantum bit per photon. To address this limitation, researchers have now devised a way to "hyperentangle" photons that they say can increase the amount of data carried by a photon pair by as much as 32 times.Read More

Physics

First-ever quantum device that detects and corrects its own errors

Before the dream of quantum computing is realized, a number of inherent problems must first be solved. One of these is the ability to maintain a stable memory system that overcomes the intrinsic instability of the basic unit of information in quantum computing – the quantum bit or "qubit". To address this problem, Physicists working at the University of California Santa Barbara (UC Santa Barbara) claim to have created breakthrough circuitry that continuously self-checks for inaccuracies to consistently maintain the error-free status of the quantum memory.Read More

Quantum Computing

New micro-ring resonator creates quantum entanglement on a silicon chip

The quantum entanglement of particles, such as photons, is a prerequisite for the new and future technologies of quantum computing, telecommunications, and cyber security. Real-world applications that take advantage of this technology, however, will not be fully realized until devices that produce such quantum states leave the realms of the laboratory and are made both small and energy efficient enough to be embedded in electronic equipment. In this vein, European scientists have created and installed a tiny "ring-resonator" on a microchip that is claimed to produce copious numbers of entangled photons while using very little power to do so.Read More

Science

Researchers achieve long-distance light to matter quantum teleportation

A successful test in passing information from light into matter – using the teleportation of the quantum state of a photon via optical fiber cable to a receiving crystal located over 25 km (15 mi) away – has been claimed by physicists at the University of Geneva. This test shattered the same team’s previous record and may herald the development of greater, long-distance teleportation techniques and qubit communications and computing capabilities.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement