Compare the latest tech products
ADVERTISEMENT

Duke University

When you have wet skin, you no doubt notice a cooling sensation as it dries. This is because the water droplets are carrying heat away from your skin with them, as they evaporate. Phase-change thermal diodes work the same way – through an evaporation and condensation process, they use liquid to transport heat away from things such as microchips. In most of these diodes, liquid placed on a hot surface evaporates, the vapor then rising onto a cooler surface, where it condenses back into liquid. In a closed-loop cycle, gravity subsequently carries that condensate back down to the hot surface, so it can once again be evaporated. Now, scientists from North Carolina's Duke University have discovered a method of getting condensed water droplets to jump back to the hot surface – and they can do so in any direction, including straight up. Read More
Whatever you call it - lavatory, privy, latrine, crapper, loo or dunny - most of us take the humble toilet for granted. But in many parts of the world the absence of sanitary waste disposal is not just inconvenient, it can cause deadly diseases such as hepatitis, dysentery, trachoma, typhoid and cholera. Enter Marc Deshusses, a Duke University environmental engineer who has envisioned an innovative yet simple waste disposal system designed specifically for Third World countries that can be constructed from everyday items. Now, as part of a broad ranging project funded by the Bill and Melinda Gates Foundation, Deshusses has received $100,000 to perfect and test the system in the laboratory before producing a prototype to field-test in 18 months time. Read More
From nude pictures of celebrities to politicians caught in compromising positions, verifying the authenticity of images online is often no easy task. To address this problem, a team at Duke University looking has developed software called YouProve that can be integrated into the Android operating system to track changes made to images or audio captured on an Android smartphone. The software then produces a non-forgeable "fidelity certificate" that uses a "heat-map" to summarize the degree to which various regions of the media have been modified compared to the original image. Read More
In a development that could have huge implications for quadriplegics, paraplegics and those with prosthetic limbs, researchers from Duke University and the Ecole Polytechnic Federale de Lausanne (EPFL) have developed technology that has allowed monkeys to control a virtual arm and touch and feel virtual objects using only their brain activity. The researchers say it is the first-ever demonstration of a two-way interaction between a primate brain and a virtual body and could lead to robotic exoskeletons that not only that allows paralyzed patients to walk again, but to also feel the ground beneath them. Read More
In June of last year we reported on the success by researchers at Duke University in developing a technique capable of producing copper nanowires at a scale that could make them a potential replacement for rare and expensive indium tin oxide (ITO) in touch screens and solar panels. However, the water-based production process resulted in the copper nanowires clumping, which reduced their transparency and prevented the copper from oxidizing, which decreases their conductivity. The researchers have now solved the clumping problem and say that copper nanowires could be appearing in cheaper touch screens, solar cells and flexible electronics in the next few years. Read More
North Carolina’s Duke University has been grabbing some headlines over the past few years, due to research carried out there involving the use of metamaterials for creating functioning invisibility cloaks. Just this month, Duke researchers announced that they had developed another such material that could be used to manipulate the frequency and direction of light at will, for use in optical switching. Now, Duke’s Prof. Yaroslav Urzhumov has proposed that metamaterials could also be used to drastically reduce the drag on ships’ hulls, “by tricking the surrounding water into staying still.” Read More
Duke University is on a roll, showing off yet another potentially game-changing property of the exotic man-made substances known as metamaterials. This time the property could have deep consequences for the transmission of information via light. Maybe the most important potential use of all. Read More
Although the number of Wi-Fi hotspots has increased dramatically in most places over the past few years, the explosion in the number of smartphones and laptops attempting to make use of such connections means that getting decent download speeds is as difficult as it always was. Not only is this frustrating, it can also be a major drain on the batteries of mobile devices. In an effort to address one of these problems, a Duke University graduate student has developed software called SleepWell that allows mobile devices to take a nap to save power while they wait for their turn to download. Read More
The old adage says “a picture is worth a thousand words,” but just exactly which words is the question. While facial recognition and GPS-enabled cameras have made tagging digital snapshots with names and locations much easier, a team of students from Duke University and the University of South Carolina has developed a smartphone app called TagSense that takes advantage of the range of multiple sensors on a mobile phone to automatically apply a greater variety of tags to photos. Read More
The weird properties of artificially engineered metamaterials are at the core of research into invisibility cloaking, but engineers from Duke University in North Carolina suggest that these materials could also provide a boost to another of technology's quests - wireless power transmission. In this latest hard-to-get-your-head-around metamaterial scenario, it's not the cloaked object that "disappears" - it's the space between the charger and the chargee. Read More
ADVERTISEMENT
ADVERTISEMENT