Introducing the Gizmag Store

Dark Matter

Left shows galaxies from AREPO simulation, right shows actual galaxies from Hubble image (...

A new approach for simulating the birth and evolution of galaxies and cosmic filaments within the Universe has been developed by researchers at the Harvard-Smithsonian Center for Astrophysics together with their colleagues at the Heidelberg Institute for Theoretical Studies. It's called AREPO, and has been used to simulate the evolution of our Universe from only 380,000 years after the Big Bang to the present. The full variety of spiral, elliptical, peculiar, and dwarf galaxies appear in the simulated Universe.  Read More

View of a cluster of galaxies spread along a dark matter filament (Photo: SDSS-III)

The Sloan Digital Sky Survey (SDSS) is little known to the public, but represents one of the most-challenging efforts in observational cosmology ever attempted. The most recent phase, SDSS-III, began in 2008 and includes the Baryon Oscillation Spectroscopic Survey (BOSS), a part of SDSS-III aimed at mapping the cosmos. Its goal is to map the physical locations of all major galaxies back to seven billion years ago, and bright quasars back to 12 billion years ago – two billion years after the Big Bang. This is being done so we can gain a better understanding of dark matter and energy, and hopefully encounter a few surprises.  Read More

A view of the distribution of dark matter in our universe, based on the Millennium Simulat...

For the first time, a team of astronomers has "observed" a filament of dark matter connecting two neighboring galaxy clusters. Dark matter is a type of matter that interacts only very weakly with light and itself. Its very nature is mysterious. Mapping the dark matter filament's gravity was the key observation. The result is considered a crucial first step by scientists - it provides the first direct evidence that the universe is filled by a lacework of dark matter filaments, upon which the visible matter in the universe is distributed like small beads. This groundbreaking observation is consistent with modern cosmological models, but the story of dark matter actually starts some 80 years ago.  Read More

Upon completion, the E-ELT is expected to be the largest optical telescope in the world

The European Southern Observatory (ESO) council met on Monday in Garching, Germany and approved the European Extremely Large Telescope (E-ELT) program, pending the confirmation of ad referendum votes from the authorities of four member states before the next council meeting. Assuming all goes according to plan, the E-ELT is expected to begin operation early in the next decade.  Read More

Majorana fermions might be the sole component of the dark matter in our Universe (Photo:

Physicists at the Delft University of Technology, Netherlands, have achieved a milestone that might soon revolutionize the world of quantum computing, quantum physics, and perhaps shed new light on the mystery of the dark matter in our universe. Experimenting with nanoelectronics, a group led by Prof. Leo Kouwenhoven has succeeded in detecting the elusive Majorana fermion in the laboratory, without the need for a particle accelerator.  Read More

ESA has selected the first two missions in its Cosmic Vision 2015-2025 Plan, which is desi...

The European Space Agency (ESA) this week announced the first two missions selected for its Cosmic Vision 2015-2025 Plan. The first, known as Solar Orbiter, will see a spacecraft operating closer to the Sun than any previous mission with a particular focus on examining the solar wind. The second, Euclid, is essentially a space telescope whose primary goal is to study the accelerating expansion of the universe in an attempt to provide an understanding of the exact nature of dark matter.  Read More

A high resolution slice of the whole 250Mpc box of Bolshoi (Made by Stefan Gottlober (AIP)...

The Bolshoi cosmological simulation is by far the most ambitious project of its kind. It harnesses the power of supercomputing to bring cosmology into the realm of experimental sciences. Based on observable input data, the Bolshoi simulation allows scientists to see what the higher structure of our universe might have looked like at particular points in time throughout its formation, arming them with tools that should make cracking the mysteries of dark matter, dark energy and galaxy formation much more feasible.  Read More

The Hubble Space Telescope image of the inner region of Abell 1689, an immense cluster of ...

Dark energy has been described as the greatest puzzle of our universe. This mysterious force, discovered in 1998, is pushing the universe apart at ever-increasing speeds and astronomers have now devised a new method of measuring it. Using NASA's Hubble Space Telescope, astronomers were able to take advantage of a giant magnifying lens in space – a massive cluster of galaxies – to narrow in on the nature of dark energy. Their calculations, when combined with data from other methods, significantly increase the accuracy of dark energy measurements and may eventually lead to an explanation of what the elusive phenomenon really is.  Read More

The Large Hadron Collider physics program has begun

After months of testing, the Large Hadron Collider research program has started at the European Organization for Nuclear Research (CERN) laboratory on the Franco–Swiss border. Accelerating particles and colliding them at 7 trillion electron volts - just half of its full capacity, but already three and a half times the energy previously achieved by the most powerful particle accelerator in the United States - scientists at LHC are now hoping to answer fundamental questions on the nature of our universe.  Read More

The universe - 500 million years after the Big Bang.

Computational Cosmology – the use of simulations to shed light on astronomical mysteries – has provided scientists with a glimpse of what the universe may have looked like 500 million years after the Big Bang, when the first galaxies were forming in the universe’s “reionization” stage. The images, produced by scientists at Durham University, will provide researchers with key insights into dark matter, which remains frustratingly elusive, despite being first proposed in 1933 and making up an estimated 80% of the universe.  Read More

Looking for something? Search our 26,560 articles