Advertisement

Cosmology

Science

Einstein's "biggest blunder" beats dark energy in explaining expansion of the Universe

It is dangerous to bet against Einstein. Cosmological research shows that the rate at which the Universe expands is increasing, rather than decreasing as was previously thought. The concept of "dark energy" with a negative pressure was introduced to describe this acceleration. Now measurements of the proton to electron mass ratio (PEMR) over the past seven billion years strongly suggest that the models of dark energy are far more contrived in explaining accelerating expansion than is Einstein's self-proclaimed "biggest blunder" – the cosmological constant. Read More

Research Watch Feature

Spitzer space telescope observations reveal expansion rate of the Universe

The size and age of our Universe is not only a critically important issue in cosmology, but is also among the most controversial and delicate of the cosmological questions. Infrared observations made using NASA's Spitzer Space Telescope have now given us the most precise estimate yet of the rate at which our Universe is expanding. The key was not the discovery of a new method for measuring distance. Rather, astronomers discovered how to measure brightness more accurately. The new value for the Hubble constant, good to within three percent, is 74.3 kilometers per second per megaparsec (km/s/Mpc). Read More

Science

Australian study backs major assumption of cosmology

In mankind's attempts to gain some understanding of this marvelous place in which we live, we have slowly come to accept some principles to help guide our search. One such principle is that the Universe, on a large enough scale, is homogeneous, meaning that one part looks pretty much like another. Recent studies by a group of Australian researchers have established that, on sizes greater than about 250 million light years (Mly), the Universe is indeed statistically homogeneous, thereby reinforcing this cosmological principle.Read More

Science

Simulated universe spawns the whole array of galaxies

A new approach for simulating the birth and evolution of galaxies and cosmic filaments within the Universe has been developed by researchers at the Harvard-Smithsonian Center for Astrophysics together with their colleagues at the Heidelberg Institute for Theoretical Studies. It's called AREPO, and has been used to simulate the evolution of our Universe from only 380,000 years after the Big Bang to the present. The full variety of spiral, elliptical, peculiar, and dwarf galaxies appear in the simulated Universe. Read More

Science

SDSS takes a trip through the past 12 billion years of our Universe

The Sloan Digital Sky Survey (SDSS) is little known to the public, but represents one of the most-challenging efforts in observational cosmology ever attempted. The most recent phase, SDSS-III, began in 2008 and includes the Baryon Oscillation Spectroscopic Survey (BOSS), a part of SDSS-III aimed at mapping the cosmos. Its goal is to map the physical locations of all major galaxies back to seven billion years ago, and bright quasars back to 12 billion years ago – two billion years after the Big Bang. This is being done so we can gain a better understanding of dark matter and energy, and hopefully encounter a few surprises. Read More

Space

Dark matter filaments detected for the first time

For the first time, a team of astronomers has "observed" a filament of dark matter connecting two neighboring galaxy clusters. Dark matter is a type of matter that interacts only very weakly with light and itself. Its very nature is mysterious. Mapping the dark matter filament's gravity was the key observation. The result is considered a crucial first step by scientists - it provides the first direct evidence that the universe is filled by a lacework of dark matter filaments, upon which the visible matter in the universe is distributed like small beads. This groundbreaking observation is consistent with modern cosmological models, but the story of dark matter actually starts some 80 years ago.Read More

Elqui Domos: The hotel for star-gazers

Located in the Elqui Valley in Chile’s Norte Chico region, Elqui Domos is one of the few astronomical hotels in the world. The area is renowned for its sparkling clear skies and Elqui Domos takes advantage of this by offering lodgings in a series of geodesic domes with elevated loft beds and open rooftops as well as recently added wooden cabins designed with star-gazing in mind.Read More

Space

Square Kilometer Array Organisation opts for dual site solution

After a tense few months that has had many in Australia and South Africa anxiously awaiting word on whether their particular site will be chosen to host the world’s largest and most sensitive radio telescope, the Square Kilometer Array (SKA) Organisation has finally made its decision. And it’s good news for both bids – or bad news, if you’re the glass half empty sort - with the organization opting for a dual-site solution that will see the SKA telescope shared between Australia and South Africa.Read More

Science

Majorana fermions – the answer to Life, the Universe, and Everything?

Physicists at the Delft University of Technology, Netherlands, have achieved a milestone that might soon revolutionize the world of quantum computing, quantum physics, and perhaps shed new light on the mystery of the dark matter in our universe. Experimenting with nanoelectronics, a group led by Prof. Leo Kouwenhoven has succeeded in detecting the elusive Majorana fermion in the laboratory, without the need for a particle accelerator.Read More

Science

Nobel Prize in Physics goes to expanding-universe researchers

For almost a hundred years, it has been widely accepted that the Universe is expanding, and that it’s been doing so ever since the Big Bang occurred approximately 14 billion years ago. It was initially assumed that the rate of expansion was slowly declining. What came as a surprise to many scientists, however, was the relatively recent announcement that the rate is in fact increasing. That was the remarkable conclusion reached by three physicists located in two countries, and it has just earned them the Nobel Prize in Physics for 2011.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement