Shopping? Check out our latest product comparisons

Cells

A close look at one of the nanomotors (inset), inside a living human cell

Imagine if it were possible to send tiny machines into living cells, where they could deliver medication, perform ultra-micro surgery, or even destroy the cell if needed. Well, we've recently come a little closer to being able to do so. Scientists at Pennsylvania State University have successfully inserted "nanomotors" into human cells, then remotely controlled those motors within the cells.  Read More

Replenishing the insulin-secreting beta cells found in the pancreas could lead to a more p...

Type 1 diabetics suffer from a lack of beta cells in the pancreas, which are responsible for insulin production. Although glucose monitoring and insulin injections allows the disease to be managed, finding a way to replenish these beta cells would offer a more permanent solution. Scientists at Gladstone Institutes in San Francisco have provided hope for just such a treatment by developing a technique to reprogram skin cells into insulin-producing beta cells.  Read More

A diagram and a microscope image (inset) of one of the bio-bots

If you were asked to think of something microscopic that moves quickly, chances are that sperm would be the first thing to come to mind. The tiny reproductive cells are able to swim as fast as they do thanks to their long whip-like tails, known as flagella. So, imagine how helpful it might be if sperm-like machines could be used for applications such as delivering medication to targeted areas of the body. Well, that's what scientists at the University of Illinois are in the process of making possible, with the creation of their heart cell-powered "bio-bots."  Read More

Researchers at the Institute for Molecules and Materials at Radboud University Nijmegen us...

Previously, chemists have managed to create artificial cell walls and developed synthetic DNA to produce self-replicating, synthetic bacterial cells. Now, for the first time, researchers have used polymers to produce an artificial eukaryotic cell capable of undertaking multiple chemical reactions through working organelles.  Read More

A nanoparticle delivery mechanism (left) treats tumors in mice more effectively

A common strategy for treating tumors is combining two or more drugs, which has the effect of decreasing toxicity and increasing the synergistic effects between the drugs. However, the efficacy of this kind of cocktail treatment suffers when the drugs require access to different parts of the cell, a bit like fighting a battle by depositing all your archers on the same spot as your infantrymen. By making use of nanoparticle-based carriers, researchers at North Carolina State University are able to transport multiple drugs into cancerous cells optimally and precisely, in maneuvers that any field commander would be proud of.  Read More

A view of the OpenWorm simulated nematode while swimming (Photo: OpenWorm)

The OpenWorm project is aimed at creating the first artificial lifeform – a bottom-up computer model of a millimeter-sized nemotode, one of the simplest known multicellular organisms. In an important step forward, OpenWorm researchers have completed the simulation of the nematode's 302 neurons and 95 muscle cells and their worm is wriggling around in fine form.  Read More

By restoring communication between a cell’s mitochondria (shown here from a mammalian lung...

With the wide-ranging benefits of reducing disease and enabling a longer, healthier life, reversing the causes of aging is a major focus of much medical research. A joint project between the University of New South Wales (UNSW) in Australia and Harvard Medical School that restored communication within animal cells has the potential to do just that, and maybe more. With the researchers hoping to begin human clinical trials in 2014, some major medical breakthroughs could be just around the corner.  Read More

Cells from rats' retinas have been successfully jetted from an inkjet printer (Photo: Shut...

Imagine if conditions that presently cause blindness could be treated by simply by fabricating new tissue, and using it to replace the defective part of the retina. We may not be at that point yet, but we've definitely taken a step closer, thanks to research being conducted at the University of Cambridge. Scientists there have successfully used an inkjet printer to "print" rats' retinal cells onto a substrate, paving the way for the creation of custom-made eye-repair material.  Read More

Researchers have regrown hair, cartilage, bone and soft tissues in a mouse model (Photo: R...

Anyone who has left youth behind them knows that bumps and scrapes don't heal as fast as they used to. But that could change with researchers at the Stem Cell Program at Boston Children's Hospital finding a way to regrow hair, cartilage, bone, skin and other soft tissues in a mouse by reactivating a dormant gene called Lin28a. The discovery could lead to new treatments that provide adults with the regenerative powers they possessed when very young.  Read More

The Nobel Prize medal is awarded to honor the highest contributions to the sciences (Photo...

The Nobel Prize in Physiology or Medicine for 2013 was awarded jointly today to James E. Rothman, Randy W. Schekman and Thomas C. Südhof "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells."  Read More

Looking for something? Search our 28,116 articles