Advertisement

Cells

Medical

Compound kills off malaria by making infected cells appear as aging red blood cells

Though recent research has given hope to the anti-malaria cause, the deadly disease still claims more than half a million lives each year. A study led by researchers at St Jude Children's Research Hospital in Memphis suggests that a certain compound results in the body's immune system treating malaria-infected cells the same way it does aging red blood cells, leading to the parasite becoming undetectable in mice within 48 hours. Read More

Medical

Platelet-like nanoparticles improve on nature to stem the blood flow

The skin is the body's first line of defense against infection. And when this barrier is broken, or an internal organ is ruptured, it is the process of coagulation, or clotting, which relies largely on blood cells called platelets, that seals the breach and stems the flow of blood. Researchers at UC Santa Barbara have now synthesized nanoparticles that mimic the form and function of platelets, but can do more than just accelerate the body's natural healing processes.Read More

Medical

New device delivers unprecedented view of cancer cells spreading

There is not a lot known about how exactly tumor cells travel to different parts of the body to form secondary cancers, a process known as metastasis. But now engineers from John Hopkins University have created a device that is offering an entirely new perspective, allowing researchers an up-close look at the cells as they spread and potentially unearthing new methods of treatment. Read More

Science

MIT "microwalkers" stroll across cell surfaces to seek out target areas

Ever wonder how a germ knows where to attack the body or how a white blood cell knows where to counter attack? How bacteria find food? Or how cells organize themselves to close a wound? How can something so simple do things so complex? A team of MIT researchers is seeking the answers as they develop "microwalkers" – microscopic machines that can move unguided across the surface of a cell as they seek out particular areas.Read More

Medical

Converting skin cells directly into brain cells advances fight against Huntington's disease

Few diseases are as terrifying as Huntington's, an inherited genetic disorder that gradually saps away at sufferers' muscle control and cognitive capacity until they die (usually some 20 or so years after initial symptoms). But scientists at Washington University School of Medicine may have provided a new glimmer of hope by converting human skin cells (which are much more readily available than stem cells) directly into a specific type of brain cell that is affected by Huntington's.Read More

Medical

Cell transplant enables paralyzed man to walk again

In 2010, Darek Fidyka was paralyzed from the chest down as a result of a knife attack that left an 8 mm gap in his spinal column. Now surgeons in Poland, working in collaboration with scientists in London, have given Fidyka the ability to walk again thanks to a new procedure using transplanted cells from his olfactory bulbs. Read More

Medical

Research suggests there may be an off switch for drug resistance in cancer cells

In cancer treatments such as chemotherapy, hundreds of thousands of cancerous cells are killed off. But if even one of these cells has a unique mutation, it can survive the treatment and start to multiply, giving rise to a set of more drug-resistant cells. Researchers at the Salk Institute in California have now gained new insights into what exactly is causing these variations in the cells, suggesting there may in fact be a way of switching off the mechanism and improving treatment effectiveness. Read More

Medical

Flipping the switch on cell conversion could better repair damaged hearts

One complication that can arise from a heart attack is the formation of scar tissue, which can the harden organ's walls and impede its ability to pump blood. This is caused by fibroblast cells which move to replace damaged muscle with the scar tissue. New research conducted at the University of North Carolina's (UNC) School of Medicine suggests these cells could be converted to endothelial cells which actually assist in recovery, potentially minimizing the damage caused during a heart attack. Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement