Shopping? Check out our latest product comparisons

Cells

Researchers have discovered a way to lower the defenses of antibiotic-resistant bacteria, ...

The discovery of antibiotics is one of the most important breakthroughs of the 20th century. But their effectiveness and low cost has led to their overuse, resulting in the worrying rise of antibiotic-resistant bacteria, or so-called superbugs. Researchers at the University of East Anglia (UAE) in England have now uncovered an Achille's heel in the bacterial cell defenses that could mean that bacteria wouldn't develop drug-resistance in the first place.  Read More

Electron micrograph of a flagellated Listeria monocytogenes bacterium, an infectious agent...

It is estimated that every year in America there are around 76 million food-borne illnesses that result in 325,000 hospitalizations and over 5,000 deaths. One of the main causes is the disease "Listeria", which has the highest hospitalization (92 per cent) and death (18 per cent) rate among all food-borne pathogen infections. Now researchers at the University of Southampton say that they are trialling a device designed to detect these bacteria directly on food preparation services, and without the need to send samples away for laboratory testing.  Read More

Bromine joins the other elements marked on this periodic table, as those critical for anim...

Joining the ranks of carbon, selenium, sulfur and 24 others as an essential element for animal life is element 35 – bromine – long considered inessential to life and moreso, shunned as a toxic disease-causing agent. However, researchers have identified the role bromine holds in animal development, even demonstrating death in fruit flies without access to this element named for its identifying stench.  Read More

A link has been discovered between a molecular scaffold and degenerative diseases such as ...

Researchers from King's College London (KCL) claim to have uncovered a link between a molecular scaffold, that allows for interaction between key components of a cell, and the debilitating effects of neurodegenerative diseases. It is possible in the long term that this line of research will yield a new target for tailored treatment in the fight against devastating afflictions such as dementia and motor neuron disease.  Read More

MIT's new nanoparticle carries three cancer-fighting drug molecules — doxorubicin is red, ...

Delivering drugs that can knock out tumor cells within the body, without causing adverse side effects, is a tricky busines. It's why scientists have taken to engineering new and creative types of nanoparticles that do the job. Increasing a nanoparticle's ability to carry more drugs expands treatment options, but creating nanoparticles capable of delivering more than one or two drugs has proven difficult – until now. Scientists at MIT report creating a revolutionary building block technique that's enabled them to load a nanoparticle with three drugs. The approach, they say, could be expanded to allow a nanoparticle to carry hundreds more.  Read More

The engineered cartilage was grown from the patient's own cells and could provide a less-i...

Researchers from Switzerland's University of Basel have performed the first successful nose reconstruction surgery using engineered cartilage grown in the laboratory. The cartilage was spawned form the patient's own cells in an approach that could circumvent the need for more invasive surgeries.  Read More

A new cell-printing technique similar to the ancient art of block printing could see the c...

Researchers in Houston have developed a cost effective method for printing living cells, claiming almost a 100 percent survival rate. The method, which is akin to a modern version of ancient Chinese wood block printing, allow cells to be printed on any surface and in virtually any two dimensional shape. And while current inkjet printers adapted to print living cells can cost upwards of US$10,000 with a cell survival rate of around 50 percent, this simple new technique could see the cell stamps produced for around $1.  Read More

Immunofluorescence image shows nanoparticles targeted to endothelial cells – the red parti...

In recent years, we've seen various research efforts looking to specifically target cancer cells as a replacement for the shotgun approach employed by chemotherapy that also damages healthy cells. The trick is to develop a delivery vehicle that identifies and targets only cancer cells, while ignoring the healthy ones. Researchers have found charged polymers have this ability, opening the door for nanoparticles containing cancer-fighting drugs to deliver their payload directly to the cancer cells.  Read More

A close look at one of the nanomotors (inset), inside a living human cell

Imagine if it were possible to send tiny machines into living cells, where they could deliver medication, perform ultra-micro surgery, or even destroy the cell if needed. Well, we've recently come a little closer to being able to do so. Scientists at Pennsylvania State University have successfully inserted "nanomotors" into human cells, then remotely controlled those motors within the cells.  Read More

Replenishing the insulin-secreting beta cells found in the pancreas could lead to a more p...

Type 1 diabetics suffer from a lack of beta cells in the pancreas, which are responsible for insulin production. Although glucose monitoring and insulin injections allows the disease to be managed, finding a way to replenish these beta cells would offer a more permanent solution. Scientists at Gladstone Institutes in San Francisco have provided hope for just such a treatment by developing a technique to reprogram skin cells into insulin-producing beta cells.  Read More

Looking for something? Search our 27,776 articles