Purchasing new hardware? Read our latest product comparisons

Carbon Dioxide

Researchers have developed an artificial photosynthesis technology that could be a win/win...

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel.  Read More

Leander Michels (left) and Prof. Jon Otto Fossum hold a chamber they use to study clay sam...

In order to minimize the amount of human-produced greenhouse gases entering the atmosphere, numerous scientists have studied materials that could be used to capture excess carbon dioxide at one of its main sources – industrial smokestacks. Such substances have included metal-organic framework materials, ionic liquids, and even a sea urchin-inspired material. Unfortunately, however, not everything that's been suggested is inexpensive or easy to produce. That said, Norwegian researchers now believe that humble clay could do the job just fine.  Read More

The material could find use in smokestacks, or anyplace else where excess CO2 needs to be ...

We've already seen a number of technologies developed for capturing carbon dioxide emissions from smokestacks or other sources, but many of them have a limitation – in order to reclaim the captured CO2 for disposal, a considerable amount of energy is needed. Now, however, scientists at the University of California, Berkeley have developed a new carbon-capture material that requires far less energy in order to give up its payload.  Read More

Carbon dioxide engines may power future interplanetary missions (Photo: Jonathan Sanderson...

Future missions to Mars may well be powered by carbon dioxide fueled engines, thanks to a recent prototype developed by Northumbria and Edinburgh Universities. Exploiting a phenomenon known as the Leidenfrost effect, researchers hope that their engine could be powered by the vast amount of dry-ice deposits found on the red planet, thereby reducing the need to transport fuel on interplanetary missions.  Read More

A recent MIT study has found that far less carbon dioxide than the ideal prediction of 90 ...

Carbon sequestration may not, according to researchers at MIT, be the panacea that some had hoped. A recent study, partially funded by the United States Department of Energy, has found that far less carbon dioxide than the ideal prediction of 90 percent may be turned into rock when sequestered. This means much might eventually escape back into the atmosphere.  Read More

A study carried out at MIT suggests that altering the quantities of materials in cement mi...

As one of our most relied upon construction materials, concrete makes a significant contribution to our overall carbon emissions. Calcium-based substances are heated at high temperatures to form the cement, a process that produces carbon dioxide. But by slightly altering the quantities of materials used, scientists from MIT have uncovered a new method of cement mixing that could reduce these emissions by more than half.  Read More

Subsystems on the MOXIE instrument (Image: NASA)

Oxygen is such an abundant resource on Earth that we rarely think about it unless we get locked in a cupboard. However, for space engineers, the question of how to get enough of the vital gas is constant, frustrating problem. To help future explorers of the Red Planet get enough oxygen for life support and powering spacecraft, NASA has included MIT’s MOXIE experiment on the Mars 2020 mission to study how to make oxygen out of the Martian atmosphere.  Read More

Researchers at Princeton University have converted CO2 into formic acid by using an electr...

Rising atmospheric CO2 levels can generally be tackled in three ways: developing alternative energy sources with lower emissions; carbon capture and storage (CCS); and capturing carbon and repurposing it. Researchers at Princeton University are claiming to have developed a technique that ticks two of these three boxes by using solar power to convert CO2 into formic acid.  Read More

The solar reactor that was used to turn water and CO2 into jet fuel

In a move that could help address our insatiable thirst for fuel while at the same time help cut CO2 emissions, scientists with the SOLAR-JET (Solar chemical reactor demonstration and Optimization for Long-term Availability of Renewable Jet fuel) project have recently shown that through a multi-step process, concentrated sunlight can be used to convert carbon dioxide into kerosene, which can then be used as jet fuel.  Read More

New research by Sintef scientists has found that refrigeration technology may reduce cost ...

For years carbon capture and storage (CCS) has been considered a costly but necessary step in reducing emissions and protecting our environment. New research by Scandinavian research organization Sintef has found that refrigeration technology may reduce costs by up to 30 percent, increasing the potential for faster implementation.  Read More

Looking for something? Search our 31,675 articles