Introducing the Gizmag Store

Caltech

An international team of researchers has set a world record two-way data rate over long di...

An international team is claiming a data transfer record that puts any home broadband connection to shame. At last month’s SuperComputing 2011 (SC11) conference in Seattle, researchers reached transfer rates of 98 gigabits per second (Gbps) between the University of Victoria Computing Centre located in Victoria, British Columbia, and the Washington State Convention Center in Seattle. Coupled with a simultaneous data rate of 88 Gbps in the opposite direction the team reached a two-way data rate of 186 Gbps to break their own previous peak-rate record of 119 Gbps set in 2009.  Read More

The new micro-lattice material is so light that it can sit atop dandelion fluff without da...

Researchers have created a new metallic material that they claim is the world’s lightest solid material. With a density of just 0.9 mg/cm3 the material is around 100 times lighter than Styrofoam and lighter than the "multiwalled carbon nanotube (MCNT) aerogel" - also dubbed "frozen smoke" – with a density of 4 mg/cm3 that we looked at earlier this year. Despite being 99.99 percent open volume, the new material boasts impressive strength and energy absorption, making it potentially useful for a range of applications.  Read More

The ePetri prototype uses an image sensor and a smartphone's LED display as a scanning lig...

When it comes to laboratory equipment, it doesn’t get much more basic than the humble petri dish. Aside from moving from glass to plastic and the addition of rings on their lids and bases that allows them to be stacked, the petri dish has remained largely unchanged since its invention by German bacteriologist Julius Richard Petri and his assistant Robert Koch in the late 1800s. Now researchers at the California Institute of technology (Caltech) have dragged the petri dish into the 21st Century by incorporating an image sensor like those found in mobile phone cameras that does away with the need for bulky microscopes.  Read More

A schematic of an acoustic diode, showing how the elastic spheres are able to convert the ...

When it comes to the sound-proofing of buildings, most people likely think of using materials that simply absorb the sound waves in a noisy room, so they can't proceed into a neighboring quiet room. Researchers at the California Institute of Technology (Caltech), however, are taking a different approach. They have created something known as an acoustic diode, that only allows sound traveling through it to go in one direction. If incorporated into building materials, such diodes would let sound travel from the quiet room to the noisy one, but would simply block noise transmission in the opposite direction.  Read More

Artist's concept illustrating a quasar, or feeding black hole, similar to APM 08279 5255, ...

Two international teams of astronomers have discovered the largest and farthest reservoir of water ever detected in the universe. The researchers found the huge mass of water feeding a black hole, called a quasar, more than 12 billion light-years away. The mass of water vapor is at least 140 trillion times that of all the water in the world's oceans combined and 100,000 times more massive than the sun.  Read More

Scientists at Caltech have created the world's first DNA-based artificial neural network

One of the things that our brains excel at is the ability to recognize what things are, even when presented with an incomplete set of data. If we know only that an animal is sold in pet stores and stuffs food in its cheeks, for instance, we can be pretty certain that the animal in question is a hamster. Now, for the first time ever, researchers at the California Institute of Technology (Caltech) have created a DNA-based artificial neural network that can do the same thing ... albeit on a very basic level. They believe that it could have huge implications for the development of true artificial intelligence.  Read More

The Caltech Field Laboratory for Optimized Wind Energy where arrays of closely spaced vert...

Although wind power energy production in 2010 was estimated to be only about 2.5 percent of worldwide electricity usage, wind turbines are considered a mature technology with many experts suggesting that we’re approaching the theoretical limit of individual wind turbine efficiency. For this reason, researchers are now looking at new approaches to wind farm design to increase the power output of wind farms. Researchers at the California Institute of Technology (Caltech) have been conducting a field study and claim the power output of wind farms can be increased at least tenfold by optimizing the placement of turbines on a given plot of land.  Read More

Rob Summers, 25, in the harness that provides support while he receives electrical stimula...

In a move that gives cautious hope to the millions of people suffering some form of paralysis, a team of researchers from UCLA, Caltech and the University of Louisville has given a man rendered paralyzed from the chest down after a hit-and-run accident in 2006 the ability to stand and take his first tentative steps in four years. The team used a stimulating electrode array implanted into the man’s body to provide continual direct electrical stimulation to the lower part of the spinal cord that controls movement of the hips, knees, ankles and toes, to mimic the signals the brain usually sends to initiate movement.  Read More

A metallic glass rod before heating and molding (left); a molded metallic glass part (midd...

What do you do if you want a material that’s as hard as glass, but that can bend without shattering, like steel? Well, if you’re a researcher at the California Institute of Technology (Caltech), you invent metallic glass. There are several types of metallic glass – which is said to be stronger than steel or titanium – all of which consist of a metal with the disordered atomic structure of glass. Although it’s been possible to produce the material in bulk since the early 90s, the production process has limitations, that have kept metallic glass from coming into common use. Now, however, a Caltech team has come up with a new process, in which the material can be shaped as easily as plastic.  Read More

Main image shows extensive plastic shielding of an initially sharp crack. Inset is a magni...

It seems hard to believe that glass could be stronger than steel, but a team of researchers has developed a super-strong metallic glass that has incredible plasticity when placed under stress, making it as strong and tough as metal. Typically, the structure of glass is strong but brittle which can cause cracks to develop and spread. The new metallic glass features palladium which has a high “bulk-to-shear” stiffness ratio. This allows the metallic glass to bend rather than crack – giving it a fracture toughness that goes beyond the limits of some of the strongest and toughest materials known.  Read More

Looking for something? Search our 26,545 articles