Highlights from the 2014 LA Auto Show

Caltech

Oceanographers run through a series of tests in preparation to deploy one of the ocean gli...

The use of "ocean gliders" for conducting research in oceanic conditions not ideal for regular methods has been catching on in the scientific community. Examples of this have been seen in the detection of endangered whales in the North Atlantic and a study of the Atlantic sturgeon. Researchers have now turned their robotic ocean helpers towards Antarctica, to study the rapidly-melting ice sheets on the coast of the western part of that polar land mass.  Read More

A lab mouse body, one week after after the start of the PARS process – the arrow in the mi...

Ordinarily, when scientists want to see specific cells within a piece of biological tissue, they first have to remove that tissue from the body, slice it very thin, then examine those two-dimensional slices using a microscope. Imagine, though, if the tissue could be made transparent – seeing tagged cells within it would be sort of like looking at three-dimensional bubbles inside an ice cube. Well, that's just what a team at Caltech have done using a technique known as PARS, or perfusion-assisted agent release in situ.  Read More

'Network coding' could make the internet faster and more secure (Image: Shutterstock)

Researchers at Aalborg University, MIT and Caltech have developed a new mathematically-based technique that can boost internet data speeds by up to 10 times, by making the nodes of a network much smarter and more adaptable. The advance also vastly improves the security of data transmissions, and could find its way into 5G mobile networks, satellite communications and the Internet of Things.  Read More

Caltech researchers are building nanoscale supermaterials from a CAD design (Photo: Meza/M...

Researchers at the California Institute of Technology are developing a disruptive manufacturing process that combines nanoscale effects and ad-hoc architectural design to build new supermaterials from the ground up. The materials can be designed to meet predetermined criteria such as weighing only a tiny fraction of their macroscopic counterpart, displaying extreme plasticity, or featuring outstanding mechanical strength.  Read More

Using Caltech's system, an ordinary microscope can capture 100 times more information per ...

Thanks to research being conducted at the California Institute of Technology, regular microscopes could soon be capable of much higher-resolution imaging. Instead of making changes to the microscopes’ optics, the Caltech researchers are instead focusing on using a computer program to process and combine images from the devices.  Read More

The DALE micro-home is the work of a collaboration between SCI-Arc and Caltech students

Students from the Southern California Institute of Architecture (SCI-Arc), and California Institute of Technology (Caltech), have joined forces to produce a net-zero micro-home concept for 2013's Solar Decathlon competition. Dubbed "DALE," the futuristic dwelling is able to expand in size, for those situations in which you don't want your micro-home to be quite so micro.  Read More

Self-healing chips recover from complete laser-inflicted transistor destruction (Photo: Je...

Although you are fairly unlikely to start zapping your gadgets with high-power lasers any time soon, scientists are already hard at work trying to make electronics immune to such cruelty. In another in a series of self-healing electronics breakthroughs, a team of scientists from the California Institute of Technology (Caltech) demonstrated chips capable of dealing not only with laser-inflicted physical damage but also with far more common ailments such as aging, power fluctuations, changes in temperature or load mismatch.  Read More

Artist's concept of the Keck asteroid capture mission (Image: Rick Sternbach / Keck Instit...

To paraphrase an old saying, if the astronaut can’t go to the asteroid, the the asteroid must come to the astronaut. In a study released by the Keck Institute for Space Studies, researchers outlined a mission to tow an asteroid into lunar orbit by 2025 using ion propulsion and a really big bag. The idea is to bring an asteroid close to Earth for easy study and visits by astronauts without the hazards and expense of a deep space mission.  Read More

CalTech's new nanofocusing plasmonic waveguide

Engineers at the California Institute of Technology (CalTech) and the University of California at Berkeley have developed a nanofocusing waveguide, a tiny passive plasmonic device which is capable of concentrating light onto a spot a few nanometers in size. In so doing, they have sidestepped the diffraction-limited nature of light, which normally prevents focusing light to a spot smaller than its own wavelength. This remarkable feat may lead to new optoelectronic applications in computing, communications, and imaging.  Read More

One of the new chips was used to non-destructively image a bullet and a knife blade hidden...

Terahertz technology (or T-Ray, for short), sounds like something out of a science fiction movie. It utilizes high-frequency terahertz waves – which are located between microwaves and far-infrared radiation on the electromagnetic spectrum – to see through solid matter without the harmful ionizing radiation of X-rays. Although T-Ray devices have yet to become compact and affordable, that could soon change thanks to new silicon microchips developed at the California Institute of Technology.  Read More

Looking for something? Search our 29,583 articles