Compare the latest tech products
ADVERTISEMENT

Caltech

An international team of astronomers from Europe, Israel and the United States has succeeded in shedding light on the origin of Type la supernovae – powerful nuclear explosions in deep space that allow us to chart the vast distances between galaxies. It is known that a white dwarf star is responsible for creating the distinctive, intensely bright explosion, but the cause of the supernovae are still a topic of hot debate.

Read More
As if smartphones can't already do enough, soon they may be able to scan three-dimensional objects and send the resultant high-resolution 3D images to a 3D printer that produces hyper-accurate replicas. This comes thanks to a small and inexpensive device called a nanophotonic coherent imager (NCI), which was developed by scientists at Caltech. The NCI could add 3D imaging to a variety of other devices and applications such as improving motion sensitivity in human machine interfaces and driverless cars. Read More
When a mineral is the most abundant on the planet, (making up an estimated 38 percent of the Earth's entire volume, in fact), you would think that someone would have given it a name by now. But things are never as simple as they seem. Despite being so prevalent, the substance in question has only ever existed in synthetic form until recently, and the first naturally-occurring example of it didn't even come from beneath the ground; it arrived from outer space. Read More
The use of "ocean gliders" for conducting research in oceanic conditions not ideal for regular methods has been catching on in the scientific community. Examples of this have been seen in the detection of endangered whales in the North Atlantic and a study of the Atlantic sturgeon. Researchers have now turned their robotic ocean helpers towards Antarctica, to study the rapidly-melting ice sheets on the coast of the western part of that polar land mass. Read More
Ordinarily, when scientists want to see specific cells within a piece of biological tissue, they first have to remove that tissue from the body, slice it very thin, then examine those two-dimensional slices using a microscope. Imagine, though, if the tissue could be made transparent – seeing tagged cells within it would be sort of like looking at three-dimensional bubbles inside an ice cube. Well, that's just what a team at Caltech have done using a technique known as PARS, or perfusion-assisted agent release in situ. Read More
Researchers at Aalborg University, MIT and Caltech have developed a new mathematically-based technique that can boost internet data speeds by up to 10 times, by making the nodes of a network much smarter and more adaptable. The advance also vastly improves the security of data transmissions, and could find its way into 5G mobile networks, satellite communications and the Internet of Things. Read More
Researchers at the California Institute of Technology are developing a disruptive manufacturing process that combines nanoscale effects and ad-hoc architectural design to build new supermaterials from the ground up. The materials can be designed to meet predetermined criteria such as weighing only a tiny fraction of their macroscopic counterpart, displaying extreme plasticity, or featuring outstanding mechanical strength. Read More
Thanks to research being conducted at the California Institute of Technology, regular microscopes could soon be capable of much higher-resolution imaging. Instead of making changes to the microscopes’ optics, the Caltech researchers are instead focusing on using a computer program to process and combine images from the devices. Read More
Students from the Southern California Institute of Architecture (SCI-Arc), and California Institute of Technology (Caltech), have joined forces to produce a net-zero micro-home concept for 2013's Solar Decathlon competition. Dubbed "DALE," the futuristic dwelling is able to expand in size, for those situations in which you don't want your micro-home to be quite so micro. Read More
Although you are fairly unlikely to start zapping your gadgets with high-power lasers any time soon, scientists are already hard at work trying to make electronics immune to such cruelty. In another in a series of self-healing electronics breakthroughs, a team of scientists from the California Institute of Technology (Caltech) demonstrated chips capable of dealing not only with laser-inflicted physical damage but also with far more common ailments such as aging, power fluctuations, changes in temperature or load mismatch. Read More
ADVERTISEMENT
ADVERTISEMENT