Top 100: The most desirable cars of all time

Brookhaven National Laboratory

A new generalized method for dna-assisted assembly can mix and match two different types o...

Researchers at the Brookhaven National Laboratory (BNL) have developed a generalized method of blending two different types of nanoparticles into a single large-scale composite material using synthetic DNA strands. The technique has great potential for designing a vast range of new nanomaterials with precise electrical, mechanical or magnetic properties.  Read More

Wei-Fu Chen examines the atomic structure of the platinum alternative electrocatalyst

Harnessing the power of hydrogen gas presents one of the most promising options available for obtaining a large-scale sustainable energy solution. However, there are numerous and significant challenges present in the production of pure hydrogen, one of the most prominent of which is the high costs associated with the use of rare and expensive chemical elements such as platinum. Accordingly, the team at the Brookhaven National Laboratory set out to create a catalyst with high activity and low costs, that could facilitate the production of hydrogen as a high-density, clean energy source.  Read More

3D X-ray image of a twenty micron lithium-ion battery electrode (Image: Brookhaven Nationa...

A new X-ray microscope at Brookhaven National Laboratory is being used to create unparalleled high-resolution 3D images of the inner structure of materials. Using techniques similar to taking a very small-scale medical CAT (computer-assisted tomography) scan, the full field transmission x-ray microscope (TXM) enables scientists to directly observe structures spanning 25 nanometers - three thousand times smaller than a red blood cell - by splicing together thousands of images into a single 3D X-ray image with "greater speed and precision than ever before." This capability is expected to power rapid advances in many fields, including energy research, environmental sciences, biology, and national defense.  Read More

In this diagram, the blue spheres represent selenium atoms forming a crystal lattice, whil...

Thermoelectric materials work by converting differences in temperature into electric voltage. If two parts of such a material experience significantly different temperatures, electrons within it will flow from the warmer part to the cooler, creating an electrical current in the process. Using these materials, electricity could be generated by the temperature differences on the inside and outside of jackets, within car engines, or even between the human body and the air around it ... just to list a few examples. An international team of scientists have now discovered that an existing material, which behaves like a liquid but isn't one, displays particularly impressive thermoelectric properties.  Read More

PET scans of a rat's brain made with the RatCAP scanner measuring levels of dopamine, whic...

U.S. scientists have developed a new miniature, wearable Positron Emission Tomography (PET) scanner which enables the simultaneous study of brain function and behavior in animals. PET scans are much like Computed Tomography (CT) scans and have helped uncover the molecular underpinnings of conditions like drug addiction, brain diseases such as dementia and they have been used in the medical imaging of cancers.  Read More

John Shanklin with the engineered plastics feedstock species Arabidopsis

Modern society's reliance on fossil fuel extends past its use as an energy source with by-products used in everything from plastics to lubricants and fertilizers. Seeking alternatives that are cleaner to produce and renewable is important for the continuation of life as we know it. This is why researchers the the U.S Department of Energy (DOE) are are engineering plants to produce chemicals needed for plastics that have traditionally come from fossil fuels.  Read More

Scanning electron microscopy image and zoom of conjugated polymer (PPV) honeycomb

While rooftops are the obvious place to put solar cells to generate clean electricity for the home, we’ve seen a number of technologies aimed at expanding the potential solar collecting area to include windows using transparent solar cells. These include Octillion Corp’s NanoPower Window technology, RSi’s semi-transparent photovoltaic glass windows, and EnSol’s transparent thin film. In this latest development, U.S. scientists have fabricated a new type of self-assembling transparent thin film material that could boost the cost effectiveness and scalability of solar window production.  Read More

Physicist Ivan Bozovic and colleagues have fabricated thin films patterned with large arra...

It has been a long-standing dream to fabricate superconducting nano-scale wires for faster, more powerful electronics. However, this has turned out to be very difficult if not impossible with conventional superconductors because the minimal size for the sample to be superconducting - known as the coherence length - is large. A group of scientists has now fabricated thin films patterned with large arrays of nanowires and loops that are superconducting when cooled below about 30 kelvin (-243 degrees Celsius). Even more interesting, they found they could change their resistance by applying a magnetic field.  Read More

Images of the brain of a transgenic mouse imaged with DEI in computed tomography mode.

A highly detailed x-ray imaging technique previously been used to examine tumors in breast tissue and cartilage in knee and ankle joints could used for early diagnosis of Alzheimer’s disease. Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are the first to test the technique’s ability to visualize a class of minuscule plaques that are a hallmark feature of Alzheimer’s disease.  Read More

Looking for something? Search our 29,888 articles
Editor's Choice
Product Comparisons