Shopping? Check out our latest product comparisons

Brigham and Women’s Hospital

Functional human platelets (the orange starfish-like things in the picture) could one day ...

Scientists have already successfully coaxed stem cells into becoming red blood cells, which could be used to create "man-made" blood for transfusion. Red blood cells, however, aren't the only component of human blood. Now, researchers at Harvard-affiliated Brigham and Women’s Hospital have also created functional human platelets, using a bioreactor that simulates the medium in which blood cells are naturally produced – bone marrow.  Read More

Researchers regrow corneas using human stem cells (Photo: Shutterstock)

Medical researchers working with human stem cells have discovered a way to improve regrowth of corneal tissue in the human eye. Using a molecule known as ABCB5 to act as an identifying marker for rare limbal stem cells, the researchers were able to use antibodies to detect ABCB5 on stem cells in tissue from donated human eyes and use them to regrow anatomically correct, fully functional human corneas in mice.  Read More

Scientists have used steroids to enhance the performance of stem cells  (Photo: Shuttersto...

Stem cells are highly promising for the treatment of everything from HIV to leukemia to baldness. In many cases, however, a great number of them must be used in order have a noticeable effect, which makes treatments impractical or expensive. Now, scientists at Harvard-affiliated Brigham and Women's Hospital have found that a smaller number of stem cells can still get the job done, if they're first hopped up on steroids.  Read More

Mouse embryo generated from STAP cells (Image: Riken)

An international research effort has found that mature animal cells can be shocked into an embryonic state simply by soaking them in acid or putting them under physical stress. The fortuitous breakthrough could prove to be massive for many fields of medical research if the method can be replicated using human cells, something researchers are confident will be possible.  Read More

HLAA sets to an elastic consistency, and bonds with cardiac tissue

A hole in the heart is never a good thing, so when an infant is born with such a defect, doctors have to act quickly to fix it. Unfortunately, both sutures and staples can damage the heart tissue, plus it takes too long to apply sutures. Existing surgical adhesives have their own drawbacks in that they can be toxic, and they typically become unstuck in wet, dynamic environments such as the heart. As a result, infants often require subsequent operations to "replug" the hole. Now, however, scientists have developed a sort of superglue for the heart, that quickly and securely bonds patches to holes.  Read More

A newly developed nanoparticle may signal the end of injections for treatment of some comm...

Most of us would swallow a pill before being poked by a needle, yet sufferers of chronic illnesses are regularly required to administer their medicine intravenously. A team of researchers from MIT and Brigham and Women's Hospital (BWH) has developed a new type of nanoparticle that could afford patients the choice – potentially making uncomfortable injections a thing of the past in the treatment of a range of chronic diseases.  Read More

Heart muscle cells aligning and stretching within the MeTro gel material (Image: Khademhos...

One of the things that makes heart disease so problematic is the fact that after a heart attack occurs, the scar tissue that replaces the damaged heart tissue isn’t capable of expanding and contracting – it doesn’t “beat,” in other words. This leaves the heart permanently weakened. Now, however, scientists from Harvard-affiliated Brigham and Women's Hospital (BWH) have developed artificial heart tissue that may ultimately provide a solution to that problem.  Read More

The intestinal worm Pomphorhynchus laevis has provided the inspiration for a new system of...

You’ve gotta love those Pomphorhynchus laevis worms. Although the parasites may feed on fish by attaching themselves to the inside of the host animal’s intestines, they’ve also provided the inspiration for a new system of keeping skin grafts secured over wound sites.  Read More

Quills may be good for more than just protecting porcupines (Photo: Shutterstock)

If you’ve known a dog that’s been quilled by a porcupine, then you’ll know that while those quills go in all-too-easily, it’s very difficult to pull them out. As part of a new research project, however, a team of scientists are looking at replicating those very characteristics in things like hypodermic needles and surgical adhesives. It turns out that what’s a bane to overly-inquisitive dogs may be a boon to medical technology.  Read More

US researchers have quantified how much longer people live when they are physically active...

The benefits of regular exercise are well known, but what exactly are you getting in return for your efforts? A research a collaboration between the U.S.-based Harvard-affiliated Brigham and Women’s Hospital and the National Cancer Institute has attempted to answer this question by quantifying how much longer people live depending on the levels of exercise they engage in.  Read More

Looking for something? Search our 28,155 articles