Decision time? Read Gizmag's latest product comparisons

Brain Computer Interface

Scientists have created a system that is able to visually reconstruct images that people h...

In the 1983 film Brainstorm, Christopher Walken played a scientist who was able to record movies of people's mental experiences, then play them back into the minds of other people. Pretty far-fetched, right? Well, maybe not. Utilizing functional Magnetic Resonance Imaging (fMRI) and computer models, researchers at the University of California, Berkeley, have been able to visually reconstruct the brain activity of human subjects watching movie trailers - in other words, they could see what the people's brains were seeing.  Read More

Harsha Agashe, a Ph.D. student in Contreras-Vidal's lab at UMD wears the Brain Cap, a non-...

Researchers at the University of Maryland (UMD) continue to advance the development of their “brain cap” technology that allows users to turn their thoughts into motion. The team has already had success in using EEG brain signals captured from the cap’s 64 electrodes attached to users’ scalps to reconstruct 3D hand movements and to control a computer cursor with their thoughts, and now the team has successfully reconstructed the complex 3D-movements of the ankle, knee and hip joints during treadmill walking. The aim is to provide a non-invasive technology that can return motor function to victims of paralysis, injury or stroke.  Read More

The BioBolt (seen here on a primate skull) is a prototype implant that could be used to wi...

For a great number of people with paralyzed limbs, the reason that they can’t move the arm or leg in question is because the “move” command isn’t able to reach from their brain to the limb. This is often due to damage to the nervous system, or to the brain, although the limb itself is still perfectly functional ... so it could still move, if only there was a way of getting the signal to it. Well, one might be on its way. Scientists at the University of Michigan have developed an implant known as the BioBolt, that wirelessly transmits neural signals from the brain to a computer. In the future, that computer could hopefully then relay them onto a formerly-paralyzed limb.  Read More

EEG brainwave headsets have potential applications ranging from medicine to gaming and mar...

Until recently a purely lab based technology, brainwave (electroencephalograph or EEG) headsets are trickling into the marketplace in a number of different guises. But what exactly do these devices do, how do they differ from each other and - with potential applications ranging from medicine to gaming and market research – who will use them and for what purpose? Dr. Max Sutherland takes a closer look.  Read More

The BCMI lets you create music using nothing more than eye movement and brainwaves

Imagine a Wii that lets you play a musical instrument with your brain without touching strings or a keyboard. That's exactly what this "proof of concept" brain-computer-music-interface (BCMI) is designed to do – it uses brain waves and eye movement to sound musical notes, so even a person with "locked-in-syndrome" could participate in creative activity analogous to learning to play a musical instrument. Developed by a team headed by Eduardo Miranda, a composer and computer music specialist from the UK's University of Plymouth, the BCMI can be set up on a laptop computer for under $3,500 (including the computer). For people who are disabled, assistive technology usually aims at day-to-day functioning and largely ignores the unique aspect of being a human – creativity. This is different.  Read More

X-ray showing the BCI implanted on the surface of a patient's brain

It is a commonly held myth that much of the effectiveness of communication is determined by nonverbal cues, but try telling that to someone who has lost the power of speech due to brain injury or damage to their vocal cords or airway. In a move that could help restore communication for in this situation, researchers at the Washington University School of Medicine in St. Louis have successfully used regions of the brain that control speech to “talk” to a computer through the implantation of a temporary surgical implant. The patients were able to manipulate a cursor on a computer screen simply by saying or thinking of a particular sound.  Read More

The x-Ar exoskeletal arm support makes life easier for people whose work requires them to ...

If you’ve seen Avatar or Aliens, then you’ve seen futuristic versions of exoskeletons – mechanical systems that human users wear over their bodies, to augment their own physical abilities. While exoskeletons are already available and in use today, they’re sometimes a bit more machine than what is needed. After all, why put on an expensive full- or half-body contraption, when you’re performing a task that mostly just requires the use of one arm? That’s where the x-Ar exoskeletal arm support comes in. Users wear it on their dominant arm, and it moves with them, providing support as they do things such as holding tools out in front of themselves.  Read More

Scientists are creating a brain-computer interface that will allow users to control device...

Practical thought-controlled devices, such as wheelchairs, artificial arms, or even cars, are perhaps a step closer to reality thanks to research being carried out at Switzerland’s Ecole Polytechnique Fédérale de Lausanne (EPFL). Traditionally, brain-computer interfaces require the user to concentrate on constantly maintaining a mental command of either turn left, turn right, or no-command (go straight). According to EPFL, most users can’t sustain more than about an hour of the necessary mental effort. The school is developing a new system, however, that allows users to take breaks and shift their attention to other things while their thought-controlled device continues to operate on its own.  Read More

German researchers have demonstrated a system that allows a car to be driven by thought co...

Since its formation in 2006, Freie Universität Berlin’s AutoNOMOS team has been researching and developing systems that could someday result in driverless, autonomous cars. Previously, they have successfully used an iPhone, an iPad, and an eye-tracking device to maneuver their Volkswagen Passat MadeInGermany test car. Now, using a commercially-available Emotiv EPOC brain-machine gaming interface, they have demonstrated that the car can be controlled by mind power.  Read More

Larger, numbered button-like electrodes (ECoGs) alongside the microECoGs indicated by the ...

Using the same technology that allowed them to accurately detect the brain signals controlling arm movements that we looked at last year, researchers at the University of Utah have gone one step further, translating brain signals into words. While the previous breakthrough was an important step towards giving amputees or people with severe paralysis a high level of control over a prosthetic limb or computer interface, this new development marks an early step toward letting severely paralyzed people speak with their thoughts.  Read More

Looking for something? Search our 28,696 articles