Advertisement
more top stories »

Batteries


— Science

Hybrid anode quadruples the lifespan of lithium-sulfur batteries

Increasing the range of electric vehicles and improving the storage of renewable energy systems are two examples of the benefits offered by lithium-sulfur batteries. Though they can hold four times the energy per mass of the lithium-ion batteries used today, their considerably shorter lifespan has proven something of a roadblock. Researchers from the Pacific Northwest National Laboratory (PNNL) have now designed a lithium-sulfur battery with four times the longevity, bringing the technology that little bit closer to maturity. Read More
— Science

Tiny fish-tracking "jellyroll" batteries should help protect salmon

In order to better understand and protect wild stocks of salmon, it's necessary to track their whereabouts using implanted acoustic tags. Needless to say, the longer that those tags are able to transmit a signal, the greater the amount of data that can be gathered. Scientists at Washington state's Pacific Northwest National Laboratory (PNNL) are helping make that happen, by developing batteries that have both a smaller size and higher energy density than conventional fish tag batteries. Read More
— Electronics

Pomegranate-inspired electrode could mean longer lithium-ion battery life

Though the use of silicon in lithium-ion batteries promises a whole new world of energy storage, it also poses several problems to a battery's durability and overall performance. A new electrode design inspired by clusters of pomegranate seeds and developed by researchers at the Department of Energy's National Accelerator Laboratory (SLAC) and Stanford University, overcomes some of these obstacles, bringing lighter and more powerful batteries closer to reality. Read More
— Electronics

New electrolyte could mean an end to spontaneously combusting lithium batteries

Last year, lithium-ion battery fires became a hot topic, pardon the inescapable pun, with both a Tesla automobile and the Boeing 787 Dreamliner succumbing to fires. In cross-disciplinary research at the University of North Carolina (UNC), a compound being studied to prevent marine life from sticking to ships may also be the solvent (and the solution) to keep lithium ion batteries from catching alight when they overheat. Read More
— Science

Lithium batteries could soon be safer, thanks to a material inspired by gum

Although high-capacity lithium batteries make many of today's mobile electronics possible, they do have one flaw – they occasionally catch fire. This can happen when they overheat, and their liquid acid electrolyte ignites and leaks out. Now, however, scientists at Washington State University have created a gummy electrolyte material that could make such fires a thing of the past. Read More
— Science

Organic flow battery could transform renewable energy storage

Researchers at Harvard have developed an inexpensive, high capacity, organic battery that uses carbon-based materials as electrolytes rather than metals. The researchers say the technology stands to be a game-changer in renewable energy storage by solving the intermittent generation problems faced by renewable sources, such as wind and solar. The battery offers large volume electricity storage not possible with solid-state batteries and at a fraction of the cost of existing flow battery technology. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement