Advertisement
more top stories »

Adaptive optics


— Space

Astronomers find vast ring system eclipsing a distant star

By - February 3, 2015 1 Picture
Astronomers from the Leiden Observatory, Netherlands, and the University of Rochester, New York, have discovered a massive ring system obscuring the light of the young star J1407b. It is believed that the rings belong to a massive planet or possibly a brown dwarf, with an orbital period of roughly 10 years. The giant planet boasts a ring system around 200 times larger than that of Saturn, whose own rings were heavily depleted in the act of creating its many moons. Read More
— Space

Exoplanet-hunter SPHERE achieves first light

By - June 6, 2014 7 Pictures
A new scientific instrument for detecting and observing remote exoplanets has been successfully installed on Unit 3 of the ESO's Very Large Telescope (VLT). The Spectro-Polarimetric High-contrast Exoplanet REsearch instrument, or SPHERE, recently returned its first set of images and is promised to revolutionize the exploration and study of these distant celestial bodies. Read More
— Science

Giant exoplanet imaged directly using infrared light

By - May 26, 2014 2 Pictures
Using an infrared camera, astronomers at the University of Montreal have discovered and directly imaged GU Psc b, a planet with a mass 10 times greater than Jupiter's and orbiting its star at 2,000 times the distance between Earth and our sun. This very rare find will encourage scientists to start looking for exoplanets in places where, thus far, they hadn't even thought to look. Read More
— Science

Adaptive optics system clobbers Hubble with the sharpest-ever telescopic images

By - August 28, 2013 9 Pictures
Astronomers have developed a new visible-light adaptive optics (AO) system for the 6.5 meter diameter Magellan-Clay telescope in Chile's Atacama desert. The new AO system replaces the secondary mirror of the telescope with a thin adaptive mirror that can be deformed by its 585 mechanical actuators at a rate of more than 1000 times a second to correct for the image smearing effects of atmospheric turbulence. The result is the sharpest astronomical images ever produced – more than twice as sharp as can be achieved by the Hubble space telescope viewing objects through the vacuum of space. Read More
— Space

Giant Magellan Telescope will sport the world's largest mirrors

By - August 28, 2013 10 Pictures
Slated for completion by 2020, the Giant Magellan Telescope (GMT) will combine seven of the largest and most precisely built telescope mirrors, to offer image resolutions 10 times greater than Hubble at around one third of the cost. The telescope will be used to study the early universe and answer open questions on dark matter, supermassive black holes, and the nature of planets beyond our solar system. Read More
— Space

High-tech imaging reveals atmospheric composition of multiple exoplanets

By - March 26, 2013 8 Pictures
While the number of exoplanets so far identified is steadily marching towards the 1000 mark, fewer than twenty have been discovered in the course of direct observation by astronomical telescopes. Four of them (HR 8977 b,c,d,and e) circle an unprepossessing A5 star called HR 8977, which lies about 130 light-years distant from Earth. Thanks to the little-known astrophysics research arm of the American Museum of Natural History (AMNH), we now have the ability to examine the makeup of their atmospheres by taking simultaneous spectrographs of all four planets. Read More
— Space

New anti-twinkle tech allows Hubble-quality images from Earth

By - August 7, 2010 3 Pictures
The verse “Twinkle, twinkle little star, how I wonder what you are” could, in fact, refer to the frustration felt by astronomers trying to view celestial objects obscured by turbulence in the earth’s atmosphere. It’s that turbulence that causes stars and other heavenly bodies to twinkle, and it’s one of the reasons that space-based telescopes like the Hubble can see those objects more clearly than telescopes down here on the ground. Recently, however, a team of astronomers from the University of Arizona developed a technique that allows them to effectively turn off the twinkling over a large field of view, allowing them to get Hubble-quality images in a fraction of the usual time. Read More
— Digital Cameras

Fastest astronomical camera will produce out-of-this-world pictures

By - June 23, 2009 1 Picture
While the twinkle of stars may delight poets and lovers, for a scientist it’s simply evidence of the atmospheric disturbance that blurs and distorts detail in deep space images. Combining an incredible 1500 exposures a second capability with an extremely sensitive CCD220 image sensor, the OCam camera is able to analyze and correct these distortions, enabling pictures taken through Very Large Telescopes (VLT) on Earth to be as sharp as those taken from space. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement