Automotive

Stanford system could allow EVs to recharge from the road, while moving

Stanford system could allow EVs to recharge from the road, while moving
By charging while you're driving, you'll get more range without even stopping
By charging while you're driving, you'll get more range without even stopping
View 2 Images
Stanford's findings could one day revolutionize the electric vehicle industry
1/2
Stanford's findings could one day revolutionize the electric vehicle industry
By charging while you're driving, you'll get more range without even stopping
2/2
By charging while you're driving, you'll get more range without even stopping

The greatest obstacle standing in the way of electric-vehicle adoption - besides crafty, deceitful right wingers - is limited range. Electric vehicles can only travel 100 miles (161 km) on their best day. Because of the lack of electric charging stations and the amount of time involved in charging a battery, they just can't go as far as gas vehicles. A team of researchers at Stanford University recently made an important discovery in wireless charging technology. Their work could one day help solve the limited-range dilemma.

According to the US Department of Energy's alternative fuel station finder, there are about 5,500 electric charging stations across the United States. That number should balloon into the five figures by the end of this year, but the extra stations will solve only a tiny part of the greater range dilemma. Most of the charging stations built or planned are Level 1 or Level 2 stations. The Alternative Fuels and Advanced Vehicles Data Center estimates that a Level 2 charging station can add about 10 to 20 miles (16 to 32 km) of range to an EV's battery in an hour. Such a little amount of charge in such a long time makes Level II stations impractical for anything much more than emergency fill-ups.

DC fast-charging stations, which make up a very small percentage of today's charging infrastructure, are the more practical solution, but even these are much slower than gas fueling. These stations are powerful enough to deliver 80 to 100 percent of a battery's charge within about half an hour - much better than a Level 1 or 2 station, but still a long time to wait for an extra 75 miles (121 km) of range. Even with these stations, long road trips will be impractical or impossible for many drivers and families.

One of the potential solutions that may make electric vehicle driving easier in the future is highway-integrated wireless-charging equipment. We covered a Korean wireless charging system several years ago, and now researchers at Stanford University have made a breakthrough of their own. The researchers believe that a magnetic resonance system that they developed holds the key to offering a steady wireless charge to moving electric vehicles.

The researchers built on work performed at MIT in 2007, which used magnetic resonance to power a light bulb 6.5 feet (2 meters) away - even while there were objects between the source and receiving coils. Stanford's researchers wanted to see if a similar system could be used to send more power. They aimed to send 10 kW between the source and receiving coil, which they believe would keep a vehicle charged while it moves at highway speeds.

Stanford's findings could one day revolutionize the electric vehicle industry
Stanford's findings could one day revolutionize the electric vehicle industry

The Stanford team used computers to experiment with the optimal design for a system that could effectively transfer 10 kW to a moving car. They found that a source coil with a 90-degree bend atop a metal plate could transfer the necessary 10 kW to an identical coil equipped to a vehicle 6.5 feet (2 m) away. They achieved transfer efficiency of 97 percent, much higher than other wireless systems, and believe that they can eventually reach higher efficiency by tweaking the design.

While the computer simulation is but a small step toward a road-integrated wireless charging infrastructure, the researchers have filed a patent on their system and plan to move toward laboratory and real-world driving tests. Extrapolated from their simulation, the system would consist of series of electrically charged coils embedded into the asphalt in roads. These coils would constantly charge electric-vehicle batteries during driving.

Study co-author Richard Sassoon, the managing director of the Stanford Global Climate and Energy Project (GCEP), explained to the Stanford Report: "What makes this concept exciting is that you could potentially drive for an unlimited amount of time without having to recharge. You could actually have more energy stored in your battery at the end of your trip than you started with."

Sassoon's quote suggests that the magnetic system would not only help with the range issue, it could virtually solve it. If this technology were one day implemented on interstate and major state highways, it would allow electric vehicles to make longer road trips even more seamlessly than gas vehicles.

The research team has also started collaborating with the engineering department to begin looking at the intricacies and problems related to designing roadways with these coils installed. Of course, they also need to determine that the magnetic system is safe to use in a real world environment and won't result in radiation harmful to humans or electromagnetic interference that could affect vehicular electronics.

You can read the study here, but be forewarned, it's not the lightest read for non-science/math-minded folks.

Source: Stanford News

46 comments
46 comments
Joe Tomicki
I have to tell u that this will not work without mods to the car. u better make a small test track to prove it. I have a electric bike that recharges while driving and it does not use anything but the road not all on the bike. so I know what it takes and this will not work without another battery added if u try to charge a battery that is being used to run the car all the power goes to the moter and can\'t go to the batterys. trust me I know.
Joe Tomicki
also if u ever put many cars on a toy slot car track u will know this will not work.
Wesley Bruce
This is not even new. The USA had about a kilometer of induction highway in California in the early 1980\'s. These guys are going to get a huge shock at the patent office. Reinventing the wheel is not profitable. This technology worked but when the first oil shock ended the project died. The coils are still in the road but nothings connected to them.
That said the technology does work and is getting cheaper. Also the 1970\'s/ 80\'s work already did the safety testing. Someone needs to do some library research.
And as a non deceitful right winger I\'d like to know if you have even followed the latest data confirming that the CO2 forcing ratio is 1.6 not 3.0? More CO2 = more heat and water vapor = more clouds = cooling negative feed back. Its summer and people are wearing scarves! China\'s now saying no to carbon taxes on planes, etc.
Hopefully as the IPCC slowly dies, abandoned in an ally by its finaciers, this project wont die as its predecessor did.
Satviewer2000
There is already something similar to this. It\'s called a \"Subway third rail\". It provides power while the vehicle is moving, or it could recharge a battery in the vehicle since it is providing electrical power. And it\'s more direct so you wouldn\'t lose power during transmission and you wouldn\'t have to bury the whole thing underground which would probably be incredibly expensive. Put it on a freeway, where people aren\'t supposed to be walking around and it would be pretty safe too.
Adrien
Actually I think the biggest impediment to EVs apart from leftie/greenies who flunked stage 1 physics, is the batteries.
Until they can either get a battery that
a) never wears out b) has about 10 times the energy storage density c) doesn\'t involve seriously nasty chemicals and processes in its production
they will not get off the ground. In short they need to figure out how to ditch the battery altogether. 97% transfer efficiency by inductive coupling is very high too - I\'d like to see this off the computer simulation and put into real life.
Jamii Hamlin
Battery vehicles are doomed and unsustainable. It pointless to pursue these type of technologies when there are cleaner and more sustainable technologies that will require less infrastructure rebuild and better adaptable for rural or uncharted off road use. I much rather have a hydrogen bottle strapped into my car and only emit water as a waste product and be able to drive far away from this pie in the sky ideas.
Roomie
I get so tired of all the bad articles where the author just believes anything he\'s told without doing any background check.
To begin with Tesla is releasing a car, Model S, this year that will go 300 miles (480 km) on one charge. That\'s quite a bit more than 100 miles stated in the article. How many times do you drive more than 300 miles in a day? The EV can then be recharged over night.
Battery tech will probably also see a great increase in the not to distant future with nano technology for example giving batteries much more surface area to react.
@ Joe, why the would you not be able to charge the battery while driving?
@ Adrien, how many cars these days never wear out? What car today can go 3000 miles on one tank?
With gas prices rising to levels where normal people can\'t afford to drive and electricity in comparison is almost free, why would you not want to change to an EV? - no matter your political ideas.
Richard Dinerman
What was the crap remark regarding \"crafty deceitful right wingers\"???? Perhaps you dishonest conniving left wing bleeding heart liberals are to blame? Seriously - your comment tainted the credibility of the entire article!
Paul Schacht
One of Gizmag\'s best features is the lack of political news / views. Please keep it that way.
As for the rest of the post, it looks more like something from the April Fool\'s Day pile or an Onion reject.
Dory Goldberger
\"The greatest obstacle standing in the way of electric-vehicle adoption - besides crafty, deceitful right wingers\"
This authors offensive comments and the poor research the efficiency issues of this kind of charging, not to the mention the cost of this type of infrastructure..... this article is poorly written.
I can tell you this if you keep reprinting this type of crap you will loose at least one reader.
Load More