Advertisement

Science

Using a technique that cuts out unwanted copies of a genome to improve the beneficial properties of a compound, researchers working at the University of Illinois College of Agricultural, Consumer, and Environmental Services (ACES) claim to have produced a yeast that could vastly increase the quality of wine while also reducing its hangover-inducing properties. Read More
Studying insects in flight can be difficult. They're usually tethered in place, although this may affect the manner in which they fly. That's why scientists from the University of California, Berkeley and Singapore’s Nanyang Technological University (NTU) took a different approach – they installed an electronic backpack on giant flower beetles, allowing them to be remotely controlled while in free flight. The technology not only gave the researchers a better insight into how the insects fly, but it could also find use in areas such as search-and-rescue. Read More
As any classic murder mystery or spy thriller will tell you, cyanide is a poison that acts quickly. Once exposed to it, a person can die within 30 minutes. Unfortunately for people who think they might have encountered it, the standard test for determining exposure takes 24 hours. Now, however, a scientist at South Dakota State University has developed a sensor that detects cyanide within a blood sample in just 70 seconds. Read More
Researchers at the University of Southampton and the Nanyang Technological University (NTU) in Singapore have found that fiber optics can be used to build low-power, high-bandwidth artificial neurons that mimic their biological counterparts. Used inside a properly designed chip, this technology could lead to computers that think and learn like a human. Read More
On most fish, their hard, overlapping scales provide considerable protection against pokes and cuts. Because those independently-moving scales are each attached to a flexible underlying skin, however, the fish are still able to easily twist and turn their bodies. Scientists from the Technion-Israel Institute of Technology and MIT are now attempting to copy that structure, to develop flexible-yet-effective armor for humans. Read More
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS) under construction in the Czech Republic is designed to generate a peak power of more than 1 quadrillion watts (1 petawatt, 1015 watts). The key component to this instrument – the laser "pump" – will be a set of solid-state laser diode arrays recently constructed by Lawrence Livermore National Laboratory (LLNL). At peak power, this electronic assemblage develops a staggering 3.2 million watts of power and are the most powerful laser diode arrays ever built. Read More
A thin and flexible chameleon-like material developed by engineers at the University of California, Berkeley changes color when stretched or bent even tiny amounts. With potential applications in camouflage, structural fatigue sensors, display technologies, and more, the material's color changes reliably as it gets flexed thanks to rows of ridges that are precisely etched onto a silicon film one thousand times thinner than a human hair. Read More
The synthesis of complex small molecules in the laboratory is specialized and intricate work that is both difficult and time-consuming. Even highly-trained chemists can take many years to determine how to build each one, let alone discover and describe its functions. In an attempt to improve this situation, a team of chemists at the University of Illinois claim to have created a machine that is able to assemble a vast range of complex molecules at the push of a button. Read More
How would you like to be able to wash your car by just hosing it off – no soap, scrubbing or drying? You may be able to in the not-too-distant future, thanks to research being led by a team at University College London. Drawing on earlier research, they've developed an ultra-hydrophobic (water-repelling) paint that can be applied to a variety of surfaces, and that stays on once applied. Read More
Most modern aircraft, cruise missiles, spacecraft – in fact, almost all flying vehicles – use an accelerometer for flight stabilization. Living creatures that fly, on the other hand, rely on their own innate sense of balance determined by environmental observation and inbuilt organ-based systems. Now French researchers have designed a bio-inspired, sight-based system that could be used in conjunction with accelerometers to vastly increase the autonomous capabilities of drones by endowing them with more natural flying abilities. Read More
Advertisement