Computational creativity and the future of AI

Science

The functioning Smart Sensor Label prototype

Are you sure that the chicken you just bought has been kept cool from the time it left the plant to the moment you stuck it in your shopping cart? Well, you could be if it had one of Thinfilm Electronics' Smart Sensor Labels on the packaging.  Read More

View of MIT's new neutron microscope looking back along the beam path (Photo: MIT)

Neutrons have a set of unique properties that make them better suited than light, electrons, or x-rays for looking at the physics and chemistry going on inside an object. Scientists working out of MIT's Nuclear Reactor Laboratory have now invented and built a high-resolution neutron microscope, a feat that required developing new approaches to neutron optics.  Read More

Doctoral student Vinay Pagay holds one of the chips

Whether you're growing wine grapes or mixing cement, there are some situations in which it's vitally important to monitor moisture content. Normally water sensors are used, although these can be both large and expensive. Now, however, a team from Cornell University has created a water-sensing silicon chip that's not only tiny, but is also reportedly "a hundred times more sensitive than current devices." What's more, the chips might be possible to mass-produce for just $5 a pop.  Read More

Swarms of remote-control cockroaches could be used to map hazardous environments for first...

Living remote-control cockroaches are now a thing. They actually exist. Besides wowing people and sparking ethics debates, however, the cyborg insects may ultimately have some very worthwhile applications. A team led by North Carolina State University's Dr. Edgar Lobaton has brought one of those applications a step closer to reality, by developing software that would allow "swarms" of the cockroaches to map hazardous environments such as collapsed buildings.  Read More

Experiments suggest that electrodes implanted in the sensory cortex of the brain can simul...

It's something most of us take for granted, but our sense of touch is every bit as useful to us as our sight and hearing. Though it seems simple, picking up and holding an object requires nearly instantaneous sensation in the parts of our hands and fingers in contact with the desired object, as well as a sense of the pressure we're applying. Many experimental efforts to simulate a sense of touch in amputees fitted with prosthetics require the subject to learn new associations between touching an object and some abstract sensation. But new research at the University of Chicago suggests that it is possible to map the individual finger pads of a prosthetic hand to the corresponding parts of the brain. In other words, prosthetic hands which offer a realistic sense of touch may theoretically be possible.  Read More

Rice University researchers say that carbyne, an elusive allotrope of carbon, could be twi...

Researchers at Rice University have used a computer simulation to calculate that carbyne, a monodimensional chain of carbon atoms, is twice as strong as carbon nanotubes and three times stiffer than diamond. If their findings are correct and the challenges posed by manufacturing it can be overcome, then carbyne could prove an incredibly useful material for a wide range of applications.  Read More

Fused quartz acceleration grating for the Stanford-SLAC dielectric laser electron accelera...

If Angus MacGyver was a particle physicist, he might face a challenge like this: Take a femtosecond laser and a fused quartz grating and make the world's most powerful particle accelerator. Despite the apparent incongruity of the resources and the goal, researchers at the US Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have fabricated a proof-of-principle electron accelerator using just such equipment. In the demonstration, electrons from a 60 MeV beam saw a force of acceleration about ten times greater than possible in a conventional accelerator.  Read More

The BIG UltraHaptics system hardware, showing the phased array ultrasonic emitter and its ...

Holodeck, anyone? Researchers at Bristol University are developing a system known as UltraHaptics that uses ultrasonic force fields to project the tactile sensations of objects in midair. Currently used for a haptic computer interface, the system might eventually enable touchable holograms.  Read More

The university's first-of-its-kind Solar Walk (Photo: The George Washington University)

We typically see photovoltaic panels up on roofs, as they're broad, open surfaces that receive a lot of sunlight. You know what else spends a lot of time in the scorching sun, though? Sidewalks. With that in mind, a team at Washington DC's The George Washington University has created what is claimed to be "the first walkable solar-paneled pathway in the world."  Read More

Looking for something? Search our 31,314 articles
Recent popular articles in Science
Product Comparisons