Decision time? Check out our latest product comparisons

Extending Moore’s Law using nuclear fusion

By

August 20, 2009

Nuclear engineer Ahmed Hassanein in his Purdue lab (Photo: Vincent Walter)

Nuclear engineer Ahmed Hassanein in his Purdue lab (Photo: Vincent Walter)

We recently looked at a technique that could help extend Moore’s Law by using DNA molecules as scaffolding to pack more power and speed into computer chips. Now researchers from Purdue University and the U.S. Department of Energy's Argonne National Laboratory are working to achieve the same result by adapting the same methods used in fusion-energy research to create extremely thin plasma beams for a new class of 'nanolithography'.

Current technology uses ultraviolet light to create the fine features in computer chips in a process called photolithography, which involves projecting the image of a mask onto light-sensitive material, then chemically etching the resulting pattern. Unfortunately, this technique is reaching its limit, so the research team is looking at ways of creating beams with narrower wavelengths.

The researchers are examining two different techniques to create the plasma beams, which generate "extreme ultraviolet" light having a wavelength of 13.5 nanometers, less than one-tenth the size of current lithography. One approach uses a laser while the other 'discharge-produced' method uses an electric current.

In either case, only about one to two percent of the energy spent is converted into plasma, so the researchers are working to improve the efficiency of both methods to reduce the energy requirements. Critical to the research is a computer simulation, called HEIGHTS (high-energy interaction with general heterogeneous target systems), which simulates the entire process of plasma evolution.

In experimental fusion reactors, magnetic fields are used to keep plasma-based nuclear fuel from touching the metal walls of the containment vessel, enabling the plasma to be heated to the extreme temperatures required to maintain fusion reactions. Simulations of laser-produced plasma beams carried out using HEIGHTS match data from laboratory experiments recently built at Purdue, which tells the researchers they are on the right track.

"The computer simulations tell us how to optimize the entire system and where to go next with the experiments to verify that," said Ahmed Hassanein, the head of Purdue's School of Nuclear Engineering.

The research teams findings will be detailed in the October-December 2009 issue of the Journal of Micro/Nanolithography, MEMS, and MOEMS.

About the Author
Darren Quick Darren's love of technology started in primary school with a Nintendo Game & Watch Donkey Kong (still functioning) and a Commodore VIC 20 computer (not still functioning). In high school he upgraded to a 286 PC, and he's been following Moore's law ever since. This love of technology continued through a number of university courses and crappy jobs until 2008, when his interests found a home at Gizmag.   All articles by Darren Quick
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 29,011 articles