Physicists change color of photons in fiber optic cable


October 5, 2010

The University of Oregon's Michael G. Raymer has changed the color of individual photons within an optical cable

The University of Oregon's Michael G. Raymer has changed the color of individual photons within an optical cable

Physicists from the University of Oregon have successfully changed the color of individual photons within a fiber optic cable. They were able to do so by focusing a dual-color burst of light from two lasers onto an optical cable carrying a single photon of a distinct color. Through a process known as Bragg scattering, a small amount of energy was exchanged between the laser light and the photon, causing the photon to change color. The achievement could pave the way for transferring and receiving high volumes of secured electronic data.

Individual bits of data are currently represented by many electrons, and are optically transmitted via pulses of infrared light containing many photons. In the promising future technology of quantum computing, those same bits could be represented by individual electrons, and transmitted via individual photons. Being able to change the color of those photons could greatly facilitate that process.

“In today's fiber optic lines one frequency of light may carry a phone conversation, while others may carry TV channels or emails, all traveling in separate channels across the Internet,” explained U Oregon physicist Michael G. Raymer. “At the level of single photons, we would like to send data in different channels – colors or wavelengths – at the same time.”

Raymer added that such technology would be impervious to hacking, and would expand users’ ability to search large databases.

Changing the color of photons in this manner is known as quantum frequency translation, and it has been achieved before, but not within a fiber optic cable. “Other researchers have done this frequency translation using certain types of crystals,” Raymer said. “Using optical fibers instead creates the translated photons already having the proper shape that allows them to be transmitted in a communication fiber.”

The research was published in the journal Physical Review Letters.

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away. All articles by Ben Coxworth
Post a Comment

Login with your Gizmag account:

Related Articles
Looking for something? Search our articles