Introducing the Gizmag Store

Nanofiber spheres carry healing cells into cartilage wounds

By

April 19, 2011

Biodegradable nanofiber microspheres show promise as a means of transporting cells to cart...

Biodegradable nanofiber microspheres show promise as a means of transporting cells to cartilage wound sites, where they can form new tissue and speed healing (Image: Peter Ma)

Cartilage wounds can be very difficult to treat. While they may eventually heal on their own, the resulting tissue often won't take the same form – or allow for the same function – as the original. Cartilage injuries are often treated with a process known as ACI (autologous chondrocyte implantation), in which a patient's own cells are injected at the wound site to form new tissue. The procedure doesn't always work, as the cells are just injected loosely, with no carrier to transport them or help them get established. Now, however, a scientist from the University of Michigan has developed a technique in which cells are delivered to wounds via injectable nanofiber spheres, and the results are said to be very promising.

Professor Peter Ma's process starts with star-shaped biodegradable polymers that self-assemble into hollow nanofiber microspheres. Cells, which are slightly smaller than the spheres, are then inserted into them.

Because they are very porous, the spheres allow nutrients to reach and nourish the cells, mimicking the cellular matrix in which the cells would normally be located. Once they reach the wound site, the spheres biodegrade, producing little in the way of byproducts that could affect cell development. Because of the protected environment they were in, the cells will have already started to grow by this point, and so are better able to integrate themselves into the wound site.

In small animal tests, wounds treated with the microspheres grew as much as three to four times the amount of tissue as a control group. Ma and his colleagues at U Michigan now plan on moving the tests up to larger animals, with human patients as their ultimate goal.

The research is being published in the journal Nature Materials.

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
1 Comment

sounds awesome

Ariel Gonzalez
28th April, 2011 @ 03:22 pm PDT
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles

Just enter your friends and your email address into the form below

For multiple addresses, separate each with a comma




Privacy is safe with us because we have a strict privacy policy.

Looking for something? Search our 26,490 articles