Shopping? Check out our latest product comparisons

Medical

McMaster University chemical biology graduate student Andrew King examines a chemical used...

A research team from McMaster University, the University of British Columbia and Cardiff University has discovered a fungus in the soil of the Canadian province of Nova Scotia that may offer hope in an increasingly fraught battle against drug-resistant bacteria.  Read More

A mouse's small intestine, as made visible using nanojuice

When someone suffers from a gastrointestinal disorder such as celiac disease, Crohn's disease or irritable bowel syndrome, it's standard practice for doctors to take a look at the state of their small intestine. This is typically done by having them drink a rather unpleasant-tasting barium solution, and then submitting to x-rays, an MRI or ultrasound. According to scientists at New York's University at Buffalo, however, all of those imaging techniques have serious shortcomings. Their proposed solution? A stiff drink of nanojuice.  Read More

Researchers regrow corneas using human stem cells (Photo: Shutterstock)

Medical researchers working with human stem cells have discovered a way to improve regrowth of corneal tissue in the human eye. Using a molecule known as ABCB5 to act as an identifying marker for rare limbal stem cells, the researchers were able to use antibodies to detect ABCB5 on stem cells in tissue from donated human eyes and use them to regrow anatomically correct, fully functional human corneas in mice.  Read More

Modified red blood cells could be put to work, delivering more than just oxygen

Although several studies are currently exploring the use of man-made nanoparticles for delivering medication to targeted areas of the body, care must be taken to ensure that those particles don't cause adverse reactions when introduced to the bloodstream. Scientists at the MIT-affiliated Whitehead Institute, however, are taking a different approach to the same basic concept. They've developed a method of attaching chemical payloads to red blood cells.  Read More

Scientists have come a step closer to being able to 3D-print biological tissue with integr...

The ability to bio-print tissues and organs could one day allow us to create custom body parts that could be used for transplants. New research has brought that possibility one step closer to reality. Scientists have bio-printed artificial vascular networks that mimic the body's circulatory system.  Read More

A group of researchers has developed a pacemaker powered by an implantable flexible piezoe...

Over the past few decades, cardiac pacemaker technology has improved to the point that pacemakers have become a commonplace medical implant that have helped improve or save the lives of many millions of people around the world. Unfortunately, the battery technology used to power these devices has not kept pace and the batteries need to be replaced on average every seven years, which requires further surgery. To address this problem, a group of researchers from Korea Advanced Institute of Science and Technology (KAIST) has developed a cardiac pacemaker that is powered semi-permanently by harnessing energy from the body's own muscles.  Read More

Quadriplegic Ian Burkhart has been given the ability to move his fingers and hand with his...

In what is being touted as a world first, a quadriplegic man has been given the ability to move his fingers and hand with his own thoughts thanks to the implantation of an electronic device in his brain and muscle stimulation sleeve. Part of a neurostimulation system dubbed "Neurobridge," the technology essentially bypasses the damaged spinal cord and reconnects the brain directly to the muscles.  Read More

Researchers have discovered a way to lower the defenses of antibiotic-resistant bacteria, ...

The discovery of antibiotics is one of the most important breakthroughs of the 20th century. But their effectiveness and low cost has led to their overuse, resulting in the worrying rise of antibiotic-resistant bacteria, or so-called superbugs. Researchers at the University of East Anglia (UAE) in England have now uncovered an Achille's heel in the bacterial cell defenses that could mean that bacteria wouldn't develop drug-resistance in the first place.  Read More

An illustration of the nanoscale interferometers on a biochip able to detect glucose in ar...

Two years ago, we first heard about how scientists at Rhode Island's Brown University were developing a biochip for detecting very low concentrations of glucose in saliva. Such a device could make life much easier for diabetics, as it would save them from having to perform fingerprick blood tests. At the time, it was limited to detecting glucose in water. Now, however, it's able to do so within a mixture of water, salts and select enzymes – also known as artificial saliva.  Read More

A prototype sensor developed at UW is designed to be permanently placed in a person's eye ...

The fluid pressure inside the eye, known as intraocular pressure (IOP), is an important metric for evaluating a person's risk of glaucoma. There are currently two different ways to measure IOP, both of which require a trip to the ophthalmologist. A prototype sensor developed by engineers at the University of Washington is designed to be placed permanently in a person's eye to track changes in eye pressure and more effectively manage the disease.  Read More

Looking for something? Search our 28,221 articles