Decision time? Read Gizmag's latest product comparisons

New process could lead to more widespread use of graphene

By

May 27, 2014

A diagram of the new graphene production technique

A diagram of the new graphene production technique

Graphene is very thin, incredibly strong, electrically conductive and chemically inert, allowing it to be used in a wide range of technologies. It's also rather difficult to work with, however, limiting its practicality. That may be about to change, as researchers at MIT and the University of Michigan have devised a new method of large-scale graphene production.

Originally, one of the most common methods of making graphene involved quickly ripping strips of adhesive tape off of solid blocks of graphite. This resulted in one-atom-thick sheets of linked carbon atoms – graphene, in other words – being stuck to the tape in flake form.

A more production-friendly approach involves depositing graphene on metal foil. In both cases, however, the graphene must be removed from the tape or the foil and transferred onto the substrate (such as silicon or glass) used in the particular electronic device or other application. That transfer process can be very fiddly, often resulting in the graphene being damaged or contaminated.

Using the MIT/U Michigan process, the graphene is deposited onto the final substrate as it's being produced.

In lab tests, a sheet of silicon dioxide glass (the substrate) was covered on one side with a film of nickel. Graphene was then deposited on the film via chemical vapor deposition. It formed into layers on both sides of the film, however – one layer was on the exposed top side, and one was on the underside, sandwiched between the nickel and the glass.

When the nickel film and the top layer of graphene were subsequently peeled off, the bottom layer of graphene remained behind on the glass. While the top layer could still be harvested from the foil using existing methods, the bottom layer was already in place on the glass, conceivably ready to be incorporated into a device such as a touchscreen or solar cell.

The process should work in both large- and small-scale applications, with substrates ranging from big sheets of glass to silicon microchips. According to MIT-based project leader A. John Hart, though, the uniformity and quality of the graphene still need to be improved before the technique can see wide-spread use.

Source: MIT

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
2 Comments

I wonder how different it is to GE's new process. Superficially, it seems GE's manufacturing is similar, but I like the ease of using a regular cd-rom burner to create the graphene plate.

http://electricnick.com/2014/05/24/ge-graphene-supercapcitor-good-news-for-mobility/

Nicolas Zart
28th May, 2014 @ 08:44 am PDT

@Nicolas Zart: How the Hell did they get graphene thick enough to peel off that CD ?

One molecule thick should have been glued to that CD like a tick on a dog.

William Carr
5th June, 2014 @ 08:42 am PDT
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 28,718 articles