Photokina 2014 highlights

Electronics

A new class of liquid crystals has been developed at Vanderbilt University

After five years of effort, chemists at Nashville’s Vanderbilt University have developed a new class of liquid crystals with an electric dipole that’s over twice that of existing liquid crystals... that’s good, right? Yes, it is. An electric dipole consists of two equal yet opposing electrical charges (i.e: positive and negative) within a molecule, that are physically separated from one another. The greater the distance between them, the larger the dipole. In liquid crystals, larger dipoles result in the ability to switch between bright and dark states faster, and lower threshold voltages – this means it requires less voltage to get them moving.  Read More

Student Shu Yang with a zero-power display (left) and Assoc. Prof. Jason Heikenfeld with a...

According to University of Cincinnati electrical and computer engineer Jason Heikenfeld, there are two types of electronic devices: things such as e-readers, that require little power but have displays with limited performance, and devices such as smartphones and laptops, that display bright, full-color moving video, but that guzzle batteries. After seven years of development, however, Heikenfeld and collaborators from Gamma Dynamics are now presenting a new type of electronic display. They claim that their “zero-power” electrofluidic system combines the energy efficiency of the one type of device, with the high performance of the other.  Read More

TDK's transparent OLED display

TDK has been showing off its new OLED film at the CEATEC conference in Chiba, Japan. This flexible film surface can even show images while bending, giving it an immediate advantage over glass displays. TDK hopes to begin production of the film displays within one year, so it might not be such a long time before we see them popping up in our mobile devices.  Read More

Fujitsu's new supercomputer is nicknamed the 'K', a reference to the Japanese word 'Kei,' ...

It wasn't so long ago that we reported on the Roadrunner supercomputer breaking the petaflop barrier. But this week Fujitsu announced that it will begin shipping its next-generation supercomputer which has a lofty performance goal of 10 petaflops – that's ten thousand trillion operations per second! The computer is nicknamed the 'K', a reference to the Japanese word "Kei," or 10 to the 16th power. If the K could reach this goal, it would hold the first place title – at least for a while – on top of the top 500 supercomputers list.  Read More

A scanning electron microscope image and a rendering of Caltech's silicon nanomesh (Image:...

Researchers at two different institutions have recently announced the development of technologies for converting waste heat from electronics into something useful. At the California Institute of Technology (Caltech), they’ve created a silicon nanomesh film that could collect heat from electric appliances such as computers or refrigerators and convert it to electricity. Meanwhile, their colleagues at Ohio State University (OSU) have been working with a semiconducting material that has the capacity to turn waste heat from computers into additional processing power.  Read More

Researchers at Yale University are using laser light to cool molecules (Image: John Barry/...

In order for quantum computers to become a reality, it would be hugely helpful if scientists were able to supercool molecules. If a temperature of near absolute zero (-273C/-460F) could be achieved, then the oscillations associated with the molecules’ low energies could be used in the creation of quantum bits for use in quantum processors. Recently, researchers at Yale University got a step closer to that goal, by using laser light to cool molecules.  Read More

Geckos inspire electronics-printing technique

A team of engineers has formulated a new method of adhesion based on a natural phenomena found in geckos. Inspired by the gecko’s ability to stick to any kind of surface and easily un-stick itself, the engineers from Northwestern University and the University of Illinois have developed a new reversible adhesion stamp. The team created a square polymer stamp that can easily transport an array of electronic devices and print them onto a diverse range of complex surfaces including clothing, plastics and leather.  Read More

Eruption of Kilauea Volcano at Mauna Ulu, February - March 1974 (Image: National Park Serv...

New technology using silicon carbide electronics could enable radio transmitters that can withstand temperatures of up to 900 degrees Celsius (1,652 F). No, it’s not being developed so listeners can enjoy their favorite breakfast DJ in a worst-case global warming scenario. Rather the team behind the research envisions devices that could be dropped into the depths of the earth to provide early warning of a volcanic eruption or to provide real time data from the inside of a jet engine or nuclear power plant.  Read More

The MultiAccount and Hidden credit cards possible with the Card 2.0 technology (Image: Dyn...

If you’re anything like me, there’s a stack of credit cards bulking up the size of your wallet (or purse), making it fit to burst in a Costanza-like explosion of receipts and unused condoms. New technology from Pittsburgh, Pennsylvania startup Dynamics Inc. could help cut the number of cards cluttering up your wallet by allowing you to access multiple credit card accounts on a single card. To enhance security, the technology also allows the credit card number that appears on the front of a card to be hidden until the correct code is entered.  Read More

Sensors sprinkled throughout the home beam information at a set frequency. Wiring wrapped ...

Smart homes of the future will automatically adapt to their surroundings using an array of sensors to record everything from the building’s temperature and humidity to the light level and air quality. One hurdle impeding the development of such intelligent homes is the fact that existing technology is still power hungry and today’s wireless devices either transmit a signal only several feet, or consume so much energy they need frequent battery replacements. Researchers have now developed sensors that run on extremely low power thanks to using a home’s electrical wiring as a giant antenna to transmit information.  Read More

Looking for something? Search our 28,577 articles