Advertisement

Dario Borghino

Dario Borghino
Dario studied software engineering at the Polytechnic University of Turin. When he isn't writing for Gizmag he is usually traveling the world on a whim, working on an AI-guided automated trading system, or chasing his dream to become the next European thumbwrestling champion.
Google has just launched a new web-based integrated development environment (IDE) that allows users to write, run and debug software that makes use of quantum algorithms. The tool could allow computer scientists to stay ahead of the game and get acquainted with the many quirks of quantum algorithms even before the first practical quantum computer is built. Read More
Augmented reality company Metaio is developing "Thermal Touch," a technology that combines infrared and visible light cameras to detect the heat signature from your fingers and turn any object into a touchscreen. The technology could be embedded in the smartphones and wearable devices of the future to offer new ways of interacting with our environment. Read More
Researchers at MIT and Stanford have found a new way to transform waste heat into electricity, particularly in situations where the temperature gradient is small, below 100º C (180° F). The technology uses widely available materials, and could be used to recycle the large amounts of wasted heat generated in industrial processes and electric power plants. Read More
Researchers from the Center for Research and Advanced Studies (CINVESTAV) in Mexico have developed a pair of glasses that use a combination of ultrasound, GPS, stereoscopic vision and artificial intelligence to help the visually impaired to navigate their environment. The device, perhaps the most sophisticated of its kind, is slated to reach mass production early next year and will likely cost up to US$1,500. Read More
Scientists at the Cockrell School of Engineering at the University of Texas have built and tested what appears to be the world's smallest, fastest, and longest-running nanomotor yet – so small that it could fit inside a single cell. The advance could be used to power nanobots that would deliver specific drugs to individual living cells inside the human body. Read More
Researchers at Stanford University have developed a new way to safely transfer energy to tiny medical devices implanted deep inside the human body. The advance could lead to the development of tiny "electroceutical" devices that can be implanted near nerve bundles, heart or brain tissue and stimulate them directly when needed, treating diseases using electronics rather than drugs. Read More
Researchers at the Institute of Photonic Sciences (ICFO) have developed a lab-on-a-chip device that can detect protein cancer markers in a drop of blood, working as a very early cancer-detection system. The device can detect very low concentrations of markers and is reliable, cheap and portable, making it attractive for deployment in remote areas of the world. Read More
Japanese company Power Japan Plus has announced the development and planned mass-production of "Ryden," a disruptive carbon battery that can be charged 20 times faster than an ordinary lithium-ion cell. The battery, which is cheap to manufacture, safe and environmentally friendly, could be ideal to improve the range and charging times of electric cars. Read More
A group of researchers at New Jersey-based LPP Fusion is turning to crowdfunding to demonstrate net power gain from a nuclear fusion reactor. The scientists plan to do this using a technique which is relatively little-known, but which they claim is scientifically sound and only relies on well-established science. Given enough funding, the researchers say they could design a US$500,000, 5 MW reactor that would produce energy for as little as 0.06 cents per kWh, all by the end of the decade. Read More
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Dresden, Germany have analyzed data from the HADES particle detector and concluded that the so-called "dark photons" are not the constituents of dark matter. Dark photons, or U bosons, are hypothetical particles that had thus far been the main candidate for that role, and this new result could make the search for the dark matter particle even more challenging than before. Read More
Advertisement