Colin Jeffrey


Thinnest, lightest, solar cells ever created outperform their bulky glass brethren

Using gossamer-like layers of flexible polymers, researchers at MIT have created the thinnest and lightest solar cells ever made. Just one-fiftieth the thickness of a human hair, and capable of producing up to 6 watts of power per gram, these cells are so thin and light that they can be supported on the surface of a soap bubble without breaking it. With such impressive credentials, the prototype cells have the potential to add solar power to everything from paper-based electronics through to all manner of mobile devices and exceptionally lightweight wearables. Read More


Charge injection device boosts chances of detecting Earth-like planets near bright stars

The quest to find small, Earth-like exoplanets isn't just a matter of pointing an exceptionally powerful telescope towards a star, as one may do to observe moons orbiting a planet. Apart from resolving images adequately in relation to the enormous distances involved, the glare from a distant sun often washes out the image of anything but the largest of planetary bodies in its vicinity. To help combat this problem, researchers at the Florida Institute of Technology (FIT) have developed a new type of astronomical camera that can detect the faint reflections of distant worlds near bright stars many millions of times better than that possible with an ordinary telescope. Read More


Liquid hydrocarbon fuel created from CO2 and water in breakthrough one-step process

As scientists look for ways to help remove excess carbon dioxide from the atmosphere, a number of experiments have focused on employing this gas to create usable fuels. Both hydrogen and methanol have resulted from such experiments, but the processes often involve a range of intricate steps and a variety of methods. Now researchers have demonstrated a one-step conversion of carbon dioxide and water directly into a simple and inexpensive liquid hydrocarbon fuel using a combination of high-intensity light, concentrated heat, and high pressure.Read More


Acoustic metasurface design completely absorbs low frequency sound

Absorbing low frequency sound is a big job, or at least, a job for big things. Acoustic absorption systems require big resonant cavities with large amounts of heavy damping material and significant surface areas to work efficiently. Consequently, the sound-deadening systems used in music studios and anechoic chambers take up a lot of room. Now scientists have flipped this notion on its head by designing coiled metasurfaces that not only completely absorb low frequency sounds, but are a tiny fraction of the size of traditional sound-absorbing systems.Read More


Nesting platform takes smart drone capabilities to new heights

The proliferation of drones for a multitude of tasks has led to improved autonomy, and reduced the level of human intervention. On the flip side, however, people are still needed to physically wrangle drones to a site whenever they are required, and much time and expense is spent deploying them. To help reduce this burden, the new Dronebox nesting platform has been created to provide 24/7 autonomous capabilities to drones. It provides an automated recharging and storage station that can be left on site so a dedicated Unmanned Aerial Vehicle (UAV) can be deployed on-call or routinely for many months at a time.Read More


Riversimple launches Rasa, a hydrogen-powered city car for the masses

A new hydrogen fuel-cell electric vehicle prototype has been launched with a claimed fuel economy equivalent to 250 mpg (88.5 km/l). Dubbed "Rasa", the new car has a lightweight carbon-fiber monocoque shell, in-wheel electric motors, a bank of supercapacitors charged by braking-regeneration, and a host of other features that enable it to travel up to a claimed 300 miles (483 km) on just a 3.3 lb (1.5 kg) tank of hydrogen.Read More


Unknown galaxies discovered lurking behind the Milky Way

In recent radio telescope studies, many hundreds of previously undiscovered galaxies have been found to exist in an area in which an enormous magnetic abnormality known as the "Great Attractor" is located. The new research may help shed light on why our galaxy, along with hundreds of thousands of others, is being inextricably pulled in that direction.Read More


    See the stories that matter in your inbox every morning