Decision time? Check out our latest product comparisons

Engineered bacterium is first living organism to use artificial DNA "letters"

By

May 11, 2014

US researchers have engineered a bacterium whose genetic material includes DNA or bases  n...

US researchers have engineered a bacterium whose genetic material includes DNA or bases not found in nature (Image: Shutterstock)

Scientists at the Scripps Research Institute (TSRI) in California have produced a living bacterium that has a strand of artificial DNA made with chemical “letters” not found in nature or any other organism.

Deoxyribonucleic acid (DNA) is the famous double helix discovered by Watson and Crick in the 1950s and commonly known as the carrier of the “genetic code” of life. It’s found in all living things on Earth, from the smallest cells to the largest redwood trees, and in each and every one of these organisms the basic DNA structure is exactly the same.

Though the models of DNA that are on display in museums seem impossibly complex, it is actually a very simple molecule. It’s twisty double backbone of phosphates and sugars carries branches that link the two spirals together like steps in a ladder. These steps consist of a surprisingly simple pairing of four nucleic acid bases: guanine (G), adenine (A), thymine (T), and cytosine (C). These bases pair up to one another like lock and key with guanine pairing with cytosine and adenine pairing with thymine.

This simple, predictable pairing allows life to happen. It provides a way to encode the genetic instructions needed to build and maintain cells. Under the influence of various enzymes, the DNA molecules unfasten and come apart like zippers, which provide the pattern for creating new strands of DNA.

This sort of base pairing is universal in all known life. If it has DNA, then it uses G-C and A-T pairs. The question is, is this pairing universal because of all life on Earth having a common ancestor, is it because of some fundamental law of chemistry, or both?

The result of years of research going back to the late 1990s, the TSRI team’s project aimed to find molecules that would pair like those in DNA and would form stably on the helix backbone of the DNA molecule. They would also need to unzip like the known bases and transcribe onto the RNA molecules to create new DNA strands. In addition, they had to be able to survive the DNA repair mechanisms in the cell that might see the new bases as faulty strands and remove them.

In 2008, the team was able to create semi-artificial strands of DNA that would replicate in a test tube in the presence of the right enzymes and would transcribe onto RNA, but, according to the team, the big leap was to get the strands to work in a living cell. They did this by creating a plasmid, which is a circular strand of DNA, that was a mixture of natural and artificial DNA elements made of molecules known as d5SICS and dNaM, and then inserting it into escherichia coli bacteria.

Obviously, the result isn't artificial life, but it is, by any definition, a novelty. The bacteria carried in their nuclei DNA with bases not found in any other living organism. The pairs are able to duplicate so long as the chemical materials are available, and the duplication occurs with reasonable speed and accuracy, the repair mechanism didn't interfere, and the growth of the cells was not impaired.

However, the new bacteria are also no Frankenstein’s micro-monsters waiting to break out of the lab on an unsuspecting world. Since 5SICS and dNaM are not found in nature, the scientists have to supply them for the DNA strands to form and they need what are called triphosphate transporter molecules produced by a species of microalgae to move the molecules into the cells. What all that adds up to is that the artificial DNA won’t work outside of the laboratory.

"When we stopped the flow of the unnatural triphosphate building blocks into the cells, the replacement of d5SICS–dNaM with natural base pairs was very nicely correlated with the cell replication itself – there didn’t seem to be other factors excising the unnatural base pairs from the DNA,” says team member Denis A. Malyshev. "An important thing to note is that these two breakthroughs also provide control over the system. Our new bases can only get into the cell if we turn on the ‘base transporter’ protein. Without this transporter or when new bases are not provided, the cell will revert back to A, T, G, C, and the d5SICS and dNaM will disappear from the genome."

According to team leader Floyd E. Romesberg, the next goal will be see if the new bases can be used to create proteins. “In principle, we could encode new proteins made from new, unnatural amino acids — which would give us greater power than ever to tailor protein therapeutics and diagnostics and laboratory reagents to have desired functions. Other applications, such as nanomaterials, are also possible.”

The teams findings were published in Nature.

Source: TSRI

About the Author
David Szondy David Szondy is a freelance writer based in Monroe, Washington. An award-winning playwright, he has contributed to Charged and iQ magazine and is the author of the website Tales of Future Past.   All articles by David Szondy
9 Comments

Then the put the unnatural protein into age controlling Components such as lymphocytes and the Zombie species was born.

BT
11th May, 2014 @ 10:23 pm PDT

can't wait for the next episode

Gavin Roe
12th May, 2014 @ 02:32 am PDT

Terrifying.

Slowburn
12th May, 2014 @ 03:24 am PDT

I wonder if this could be used to solve the issue of farmers being sued for infringing IP rights regarding genetically engineered crops.

The cases I've seen where a farmer buys the GM seed and plants his fields. Then polinators cross polinate to neighboring crops causing their seed to test positive for the genes that were changed. Then the seed company sues the neighbor for infringing their IP despite having in no way sought to recieve the GM crops.

If the gm genes were only active in the presence of the artificially maintained genes then the neighbors would no longer have to live in fear that someone would plant GE crops nearby.

VirtualGathis
12th May, 2014 @ 07:39 am PDT

Very interesting. Had to chuckle when thinking of the "Lysine contingency" in Jurassic Park, where the animals could never reproduce outside the lab. "Life finds a way"!

wanderkip
12th May, 2014 @ 09:31 am PDT

So with all of our sterile environments, computer enhanced technology, and miracles of modern science...

the first time that life (if ever) is made in the lab...

...people will cite it as proof that life can arise all by itself in natural processes. LOL!

Lbrewer42
12th May, 2014 @ 01:15 pm PDT

I find no comfort at all in their promise that this new life form only works in a lab.

When criminals and dictators in Russia, North Korea, and Iran get this technology they will use it against their 'enemies', which is everyone in the civilized world.

robo
12th May, 2014 @ 02:53 pm PDT

*way* cool. If I understand correctly, though, almost all modifications we make to DNA tend to automatically get "reverted" by DNA - i.e. - changing stuff isn't the hard part, but figuring out how to stop life from un-doing what we changed *is*. In other words - it comes as no surprise that they say it's easy for it to "be gone" in future generations.

What I do know, for those who've never seen this stuff going on before, is that they do not have sealed clean-rooms and safety chambers etc like you see in the movies - these labs are like any other ordinary office, and their workers don't do anything extra-special to prevent spreading their new stuff. In fact - they use ordinary blotting paper and regular US mail for sharing (and buying/selling) genetic material.

christopher
12th May, 2014 @ 09:41 pm PDT

It's all very interesting and while I don't buy into conspiracy theories, it does make me wonder how far science will push. Have we already opened Pandora's box? If not, surely it's only a matter of when?

Australian
14th May, 2014 @ 03:05 am PDT
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 29,162 articles